VEEQTH(

Security Assessment

SaitaMask

Dec 25th, 2021

I <

Table

Summary

Overview

of Contents

Project Summary

Audit Summary,

Vulnerability Summary

Audit Scope

Findings
SVE-01

: Missing_Input Validation

SVE-02 :

Declaration Naming_Convention

SVF-01

: Unnecessary Array as Counter

SVF-02 :

Missing Emit Events

SVP-01

: Divide by Zero

SVR-01

: Missing_Input Validation

SVR-02 :

Proper Usage of ‘require’ And “assert’ Functions

SVR-03 :

Incompatibility With Deflationary Tokens

SVS-01

: Missing_Input Validation

SVS-02:

Proper Usage of “require” And "assert’ Functions

SVS-03:

Incompatibility With Deflationary Tokens

WET-01 :

Declaration Naming_Convention

Appendix

Disclaimer

About

SaitaMask Security Assessment

I = SaitaMask Security Assessment

Summary

This report has been prepared for SaitaMask to discover issues and vulnerabilities in the source code of
the SaitaMask project as well as any contract dependencies that were not part of an officially recognized
library. A comprehensive examination has been performed, utilizing Static Analysis and Manual Review

techniques.
The auditing process pays special attention to the following considerations:

« Testing the smart contracts against both common and uncommon attack vectors.

» Assessing the codebase to ensure compliance with current best practices and industry standards.

« Ensuring contract logic meets the specifications and intentions of the client.

« Cross referencing contract structure and implementation against similar smart contracts produced
by industry leaders.

» Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend
addressing these findings to ensure a high level of security standards and industry practices. We suggest

recommendations that could better serve the project from the security perspective:

» Enhance general coding practices for better structures of source codes;

» Add enough unit tests to cover the possible use cases;

» Provide more comments per each function for readability, especially contracts that are verified in
public;

» Provide more transparency on privileged activities once the protocol is live.

. EEEE SaitaMask Security Assessment

Project Summary
Project Name SaitaMask
Platform Ethereum
Language Solidity
git@gitlab.com:luismauricio/saitamask-v1-core.git
Codebase
git@qgitlab.com:luismauricio/saitamask-v1-periphery.git
c 21ea25ea678827664af0caa8a3e04e710e067e52
ommit
826042f2414b9deb98a29cab6d32c86b29904244
Audit Summary
Delivery Date Dec 25, 2021
Audit Methodology Static Analysis, Manual Review

Key Components

Vulnerability Summary

Vulnerability Level Total (Pending & Declined (@ Acknowledged (& Partially Resolved () Resolved

@ Critical 0 0 0 0 0 0
® Major 0 0 0 0 0 0
Medium 0 0 0 0 0 0
Minor 6 0 0 2 0 4
@ Informational 6 0 0 0 0 6

® Discussion 0 0 0 0 0 0

mailto:git@gitlab.com
mailto:git@gitlab.com

I <<~

Audit Scope

ID

MSM

SVE

SVF

SVP

BSM

SVL

SVM

SVO

THS

SVS

SVR

SVC

WET

File

projects/SaitaMask/saitamask-v1-core/contracts/Migrations.s

ol

projects/SaitaMask/saitamask-v1-core/contracts/SaitamaskV1
ERC20.sol

projects/SaitaMask/saitamask-v1-core/contracts/SaitamaskV1

Factory.sol

projects/SaitaMask/saitamask-v1-core/contracts/SaitamaskV1

Pair.sol

projects/SaitaMask/saitamask-v1-periphery/contracts/librarie

s/Babylonian.sol

projects/SaitaMask/saitamask-v1-periphery/contracts/librarie

s/SaitamaskV1Library.sol

projects/SaitaMask/saitamask-v1-periphery/contracts/librarie

s/SaitamaskV1LiquidityMathLibrary.sol

projects/SaitaMask/saitamask-v1-periphery/contracts/librarie

s/SaitamaskV1OracleLibrary.sol

projects/SaitaMask/saitamask-v1-periphery/contracts/librarie

s/TransferHelper.sol

projects/SaitaMask/saitamask-v1-periphery/contracts/Saitama

skV1Migrator.sol

projects/SaitaMask/saitamask-v1-periphery/contracts/Saitama
skV1Router01.sol

projects/SaitaMask/saitamask-v1-periphery/contracts/Saitama

skV1Router02.sol

projects/SaitaMask/saitamask-v1-periphery/contracts/WETH.s

ol

SaitaMask Security Assessment

SHA256 Checksum

4fd6092bdfa8b42f19d535¢c5ac69¢c4323b0b89471
7c699e58d5552eeabd04cd4

6c3aal127016c57f5a9292129636b16f33f805fcd
6b90c1e11352fca3d21b2f0

4dd15c2fbc8a9e837e5b36920a21219de20f08d7
9f126341cfc0c622f6870723

db5a4ae472a3d07ae8b606cf8cd830400abf50d63
d201472e0919d3e0a97abd24

55f7f97f332b408835ff07a374bef0a8ef698abe282
de76a259f2eabb7d210b4

540b508bf172c6b78776d91fe70f4e9ac17c816c0
d2ca07ae4c993555880633b

8735ef8f74fd58a490f40cd5660ffb403fb9973572
8765c9f7362fabccd0719

e634ed159a1bf2ad9b8af0b6dcec3ec56bc2f28b1
6515a0ffa4ffde8fed78464

22b87fd425d590e533ab7e52478cf72bdc4bde26
72e0977c7eff7742e8f0737d

3fbbccd15b4fcf6324e61719a630fe06a048456db
€982879e0ac301598e79e76

e€89975e4a015bd2782977bc21ffbabe91cfcc59e7
a4b6a6c503394cb28f5b402

9cb30569401c20226d7096135b2036f4487e101c
d5de6d4df2b4ald646acbb75

a847d003c6497f43e244f4c2e2690a34313e96217
€69db097ae839¢c573db1b7f

I <~

Findings

SVE-01

SVE-02

SVF-01

SVF-02

SVP-01

SVR-01

SVR-02

SVR-03

SVS-01

SVS-02

SVS-03

WET-01

12

Total Issues

Title
Missing Input Validation

Declaration Naming Convention
Unnecessary Array as Counter

Missing Emit Events
Divide by Zero
Missing Input Validation

Proper Usage of require And assert

Functions
Incompatibility With Deflationary Tokens
Missing Input Validation

Proper Usage of require And assert

Functions
Incompatibility With Deflationary Tokens

Declaration Naming Convention

@ Critical
@ Major
@ Medium

Minor

@ Informational

@ Discussion

Category

Volatile Code

Coding Style

Gas

Optimization

Coding Style

Logical Issue

Volatile Code

Coding Style

Logical Issue

Volatile Code

Coding Style

Logical Issue

Coding Style

SaitaMask Security Assessment

0 (0.00%
0 (0.00%
0 (0.00%
6 (50.00%

)
)
)
)
6 (50.00%)
)

Severity

Minor

® Informational
® Informational

® Informational
Minor

Minor
® Informational

Minor

Minor
® Informational

Minor

® Informational

Status

© Resolved

© Resolved

© Resolved

© Resolved

© Resolved

® Resolved

® Resolved

@ Acknowledged

© Resolved

© Resolved

@ Acknowledged

© Resolved

I = SaitaMask Security Assessment

SVE-01 | Missing Input Validation

Category Severity Location Status
Volatile) projects/SaitaMask/saitamask-v1-core/contracts/SaitamaskV1ERC20.sol: 46, 5
Minor ® Resolved
Code 2,57
Description

The given input is missing the check for the non-zero address.

Recommendation

We advise adding the check for the passed-in values to prevent unexpected error as below:

46
47
48
49
50
51

52
53
54
55
56
57

57
58
59
60
61
62
63

function

_burnCaddress from, uint value) internal {
require(from !'= address(@), "burn from zero address!");
balanceOf [from| = balanceOf[from].sub(value);
totalSupply = totalSupply.sub(value);

emit Transfer(from, address(@), value);

function _approve(address owner, address spender, uint value) private {

require(owner != address(@), "owner is zero address!");
require(spender != address(@), "spender is zero address!");
allowance[owner]|[spender] = value;

emit Approval(Cowner, spender, value);

function _transfer(address from, address to, uint value) private {

require(from != address(@), "from is zero address!");
require(to !'= address(@), "to is zero address!");
balanceOf[from] = balanceOf[from].sub(value);
balanceOf[to] = balanceOf[to].add(value);

emit Transfer(from, to, value);

Alleviation

As per commit 82604f2f2414b9deb98a29cabd32c86b29904244 , the affected functions are now checking for

the non-zero address.

. R SaitaMask Security Assessment

SVE-02 | Declaration Naming Convention

Category Severity Location Status
Coding) projects/SaitaMask/saitamask-v1-core/contracts/SaitamaskV1ERC20.so
@ Informational ® Resolved
Style l: 9~11
Description

The linked declarations do not conform to the Solidity style guide with regards to its naming convention.
Particularly:

e camelCase: Should be applied to function names, argument names, local and state variable names,

modifiers
e UPPER_CASE: Should be applied to constant variables

e CapWords: Should be applied to contract names, struct names, event names and enums

Recommendation

We advise that the linked variable and function names are adjusted to properly conform to Solidity's

naming convention.

Alleviation

As per commits ba62ee0a2d481c171332¢c1664152c82¢370627ed and
8260412f2414b9deb98a29cab6d32c86b29904244 , the highlighted constants are now following the naming

convention.

https://solidity.readthedocs.io/en/v0.7.3/style-guide.html#naming-conventions

. R SaitaMask Security Assessment

SVF-01 | Unnecessary Array as Counter

Category Severity Location Status
Gas) projects/SaitaMask/saitamask-v1-core/contracts/SaitamaskV1Factor
® Informational ® Resolved
Optimization y.sol: 12, 20, 37, 38
Description

The usage of allPairs array is as a counter to maintain the number of created pairs.

Recommendation

We advise the client to replace the allPairs with a simple uint type counter to store the number of pairs
created.

Alleviation

As per commit 82604f2f2414b9deb98a29cabd32c86b29904244 , the allPairs array has been substituted

by the pairsCount unsigned integer.

I = SaitaMask Security Assessment

SVF-02 | Missing Emit Events

Category Severity Location Status
Coding . projects/SaitaMask/saitamask-v1-core/contracts/SaitamaskV1Factory.s
® Informational ® Resolved
Style ol: 41, 46
Description

The function that affects the status of sensitive variables should be able to emit events as notifications.

e setFeeTo()

e setFeeToSetter()

Recommendation

We advise the client to consider adding events for sensitive actions, and emit them in the function.

Alleviation

As per commit 82604f212414b9deb98a29ca6d32c86b29904244 , the setFeeTo() and setFeeToSetter()

functions are now emitting events.

. R SaitaMask Security Assessment

SVP-01 | Divide by Zero

Category Severity Location Status
Logical) projects/SaitaMask/saitamask-v1-core/contracts/SaitamaskV1Pair.sol: 143~14
Minor ® Resolved
Issue 5
Description

If the value of totalSupply is O, the following two division operations will fail due to the divide by 0 error,

which ultimately make the invocation to burn() function fail.

144 amount® = liquidity.mul(balance@) / _totalSupply; // using balances ensures pro-rata

distribution
145 amountl = liquidity.mul(balancel) / _totalSupply; // using balances ensures pro-rata
distribution

Recommendation

We advise the client to add the following validation in the function burn()

134 function burn(Caddress to) external lock returns (uint amount®, uint amountl) {
135 require(totalSupply != @, "The value of totalSupply must not be 0");

136

137 %

Alleviation

As per commit 82604f2f2414b9deb98a29cabd32c86b29904244 , the burn function is now checking whether

the total supply is zero or not.

. R SaitaMask Security Assessment

SVR-01 | Missing Input Validation

Category Severity Location Status
Volatile) projects/SaitaMask/saitamask-v1-periphery/contracts/SaitamaskV1Router01.so
Minor ® Resolved
Code l: 21~22
Description

The given input is missing the check for the non-zero address.

Recommendation

We advise adding the check for the passed-in values to prevent unexpected error as below:

20 constructor(address _factory, address _WETH) public {

21 require(_factory != address(@),"_factory should not be address(@)");
22 require(_WETH != address(@),"_WETH should not be address(@)");
23 factory = _factory;
24 WETH = _WETH;
25 1}
Alleviation

As per commit ba62ee®a2d481c¢171332c1664152c82c370627ed, the constructor function is now making

sure that the _factory and _WETH addresses are not equal to the zero address.

. R SaitaMask Security Assessment

SVR-02 | Proper Usage of require And assert Functions

Category Severity Location Status
Coding) projects/SaitaMask/saitamask-v1-periphery/contracts/SaitamaskV1Router
® Informational ® Resolved
Style 01.sol: 214, 256, 93, 52, 26
Description

The assert() function should only be used to test for internal errors, and to check invariants. The
require() function should be used to ensure valid conditions, such as inputs, or contract state variables
are met, or to validate return values from calls to external contracts.

Recommendation

We advise the client using the require() function, along with a custom error message when the condition
fails, instead of the assert() function.

Alleviation

As per commit ba62ee0a2d481c¢171332c1664f52c82c370627ed, the SaitamaskV1Router@2.sol is now

using require() instead of assert().

. R SaitaMask Security Assessment

SVR-03 | Incompatibility With Deflationary Tokens

Category Severity Location Status
Logical) projects/SaitaMask/saitamask-v1-periphery/contracts/SaitamaskV1Router0
Minor @ Acknowledged
Issue 1.s0l: 70~71, 91, 109
Description

When users add or remove LP tokens into the router, and the mint and burn operations are performed.
When transferring standard ERC20 deflationary tokens, the input amount may not be equal to the received

amount due to the charged transaction fee. As a result, the amount inconsistency will occur and the
transaction may fail due to the validation checks.
Recommendation

We advise the client to regulate the set of LP tokens supported and add necessary mitigation mechanisms

to keep track of accurate balances if there is a need to support deflationary tokens.

. R SaitaMask Security Assessment

SVS-01 | Missing Input Validation

Category Severity Location Status
Volatile) projects/SaitaMask/saitamask-v1-periphery/contracts/SaitamaskV1Router02.so
Minor ® Resolved
Code I: 24~25
Description

The given input is missing the check for the non-zero address.

Recommendation

We advise adding the check for the passed-in values to prevent unexpected error as below:

23 constructor(address _factory, address _WETH) public {

24 require(_factory != address(@),"_factory should not be address(@)");
25 require(_WETH != address(@),"_WETH should not be address(@)");
26 factory = _factory;
27 WETH = _WETH;
28 }
Alleviation

As per commit ba62ee®a2d481c171332c1664152c82c370627ed, the constructor function is now making

sure that the _factory and _WETH addresses are not equal to the zero address.

. R SaitaMask Security Assessment

SVS-02 | Proper Usage of require And assert Functions

Category Severity Location Status
Coding) projects/SaitaMask/saitamask-v1-periphery/contracts/SaitamaskV1Rout
® Informational ® Resolved
Style er02.sol: 29
Description

The assert() function should only be used to test for internal errors, and to check invariants. The
require() function should be used to ensure valid conditions, such as inputs, or contract state variables
are met, or to validate return values from calls to external contracts.

Recommendation

We advise the client using the require() function, along with a custom error message when the condition
fails, instead of the assert() function.

Alleviation

As per commit ba62ee@a2d481c171332c1664f52c82c370627ed, the SaitamaskV1Router@2.sol is now

using require() instead of assert().

. R SaitaMask Security Assessment

SVS-03 | Incompatibility With Deflationary Tokens

Category Severity Location Status
Logical) projects/SaitaMask/saitamask-v1-periphery/contracts/SaitamaskV1Router0
Minor @ Acknowledged
Issue 2.sol: 73~74,94, 113
Description

When users add or remove LP tokens into the router, and the mint and burn operations are performed.
When transferring standard ERC20 deflationary tokens, the input amount may not be equal to the received

amount due to the charged transaction fee. As a result, the amount inconsistency will occur and the
transaction may fail due to the validation checks.
Recommendation

We advise the client to regulate the set of LP tokens supported and add necessary mitigation mechanisms

to keep track of accurate balances if there is a need to support deflationary tokens.

. R SaitaMask Security Assessment

WET-01 | Declaration Naming Convention

Category Severity Location Status
Coding) projects/SaitaMask/saitamask-v1-periphery/contracts/WETH.sol: 23~2
® Informational ® Resolved
Style 5
Description

The linked declarations do not conform to the Solidity style guide with regards to its naming convention.
Particularly:

e camelCase: Should be applied to function names, argument names, local and state variable names,

modifiers
e UPPER_CASE: Should be applied to constant variables

e CapWords: Should be applied to contract names, struct names, event names and enums

Recommendation

We advise that the linked variable and function names are adjusted to properly conform to Solidity's

naming convention.

Alleviation

As per commits ba62ee0a2d481c171332¢c1664152c82¢370627ed and
8260412f2414b9deb98a29cabd32c86b29904244 , the highlighted constants are now following the naming

convention.

https://solidity.readthedocs.io/en/v0.7.3/style-guide.html#naming-conventions

. R SaitaMask Security Assessment

Appendix

Finding Categories

Gas Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more optimal

EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Logical Issue

Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that may
result in a vulnerability.
Coding Style

Coding Style findings usually do not affect the generated byte-code but rather comment on how to make

the codebase more legible and, as a result, easily maintainable.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2
with digest size of 256 bits) digest of the content of each file hosted in the listed source repository under

the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command

against the target file.

. R SaitaMask Security Assessment

Disclaimer

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used
by the Company only to the extent permitted under the terms and conditions set forth in the Agreement.
This report may not be transmitted, disclosed, referred to or relied upon by any person for any purposes,
nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any
“product” or “asset” created by any team or project that contracts CertiK to perform a security
assessment. This report does not provide any warranty or guarantee regarding the absolute bug-free
nature of the technology analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is
that each company and individual are responsible for their own due diligence and continuous security.
CertiK’s goal is to help reduce the attack vectors and the high level of variance associated with utilizing
new and consistently changing technologies, and in no way claims any guarantee of security or

functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing
development. You agree that your access and/or use, including but not limited to any services, reports,
and materials, will be at your sole risk on an as-is, where-is, and as-available basis. Cryptographic tokens
are emergent technologies and carry with them high levels of technical risk and uncertainty. The
assessment reports could include false positives, false negatives, and other unpredictable results. The

services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS,
OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS

. R SaitaMask Security Assessment

AVAILABLE” AND WITH ALL FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE
MAXIMUM EXTENT PERMITTED UNDER APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL
WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT LIMITING THE FOREGOING,
CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM
COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK
MAKES NO WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT,
WORK PRODUCT, OR OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF,
WILL MEET CUSTOMER’S OR ANY OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED
RESULT, BE COMPATIBLE OR WORK WITH ANY SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE
SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL CODE, OR ERROR-FREE. WITHOUT LIMITATION
TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR UNDERTAKING, AND MAKES NO
REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S REQUIREMENTS,
ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,
APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY
PERFORMANCE OR RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR
DEFECTS CAN OR WILL BE CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY,
RELIABILITY, OR CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE
SERVICE. CERTIK WILL ASSUME NO LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES,
OR INACCURACIES OF CONTENT AND MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND
INCURRED AS A RESULT OF THE USE OF ANY CONTENT, OR (Il) ANY PERSONAL INJURY OR
PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING FROM CUSTOMER’S ACCESS TO
OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY
OF OR CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE
THIRD-PARTY OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY
PROVIDED TO CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY
PURPOSE NOT SPECIFICALLY IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO,
ANY OTHER PERSON WITHOUT CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR
OTHER BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING

. R SaitaMask Security Assessment

MATERIALS AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST
CERTIK WITH RESPECT TO SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING
MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE
SOLELY FOR THE BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING
ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH
REPRESENTATIONS AND WARRANTIES AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF
CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH REPRESENTATIONS OR WARRANTIES OR
ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION UNDER THIS AGREEMENT OR
OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS
OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX,
LEGAL, REGULATORY, OR OTHER ADVICE.

I = SaitaMask Security Assessment

About

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia
University, CertiK is a leading blockchain security company that serves to verify the security and
correctness of smart contracts and blockchain-based protocols. Through the utilization of our world-class
technical expertise, alongside our proprietary, innovative tech, we’re able to support the success of our
clients with best-in-class security, all whilst realizing our overarching vision; provable trust for all

throughout all facets of blockchain.

