
Security Assessment

SaitaMask
Dec 25th, 2021

Table of Contents
Summary

Overview
Project Summary

Audit Summary

Vulnerability Summary

Audit Scope

Findings
SVE-01 : Missing Input Validation

SVE-02 : Declaration Naming Convention

SVF-01 : Unnecessary Array as Counter

SVF-02 : Missing Emit Events

SVP-01 : Divide by Zero

SVR-01 : Missing Input Validation

SVR-02 : Proper Usage of `require` And `assert` Functions

SVR-03 : Incompatibility With Deflationary Tokens

SVS-01 : Missing Input Validation

SVS-02 : Proper Usage of `require` And `assert` Functions

SVS-03 : Incompatibility With Deflationary Tokens

WET-01 : Declaration Naming Convention

Appendix

Disclaimer

About

SaitaMask Security AssessmentSaitaMask Security Assessment

Summary
This report has been prepared for SaitaMask to discover issues and vulnerabilities in the source code of

the SaitaMask project as well as any contract dependencies that were not part of an officially recognized

library. A comprehensive examination has been performed, utilizing Static Analysis and Manual Review

techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced

by industry leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend

addressing these findings to ensure a high level of security standards and industry practices.
We suggest

recommendations that could better serve the project from the security perspective:

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in

public;

Provide more transparency on privileged activities once the protocol is live.

SaitaMask Security Assessment

Overview

Project Summary

Project Name SaitaMask

Platform Ethereum

Language Solidity

Codebase
git@gitlab.com:luismauricio/saitamask-v1-core.git

git@gitlab.com:luismauricio/saitamask-v1-periphery.git

Commit
21ea25ea678827664af0caa8a3e04e710e067e52

82604f2f2414b9deb98a29ca6d32c86b29904244

Audit Summary

Delivery Date Dec 25, 2021

Audit Methodology Static Analysis, Manual Review

Key Components

Vulnerability Summary

Vulnerability Level Total Pending Declined Acknowledged Partially Resolved Resolved

Critical 0 0 0 0 0 0

Major 0 0 0 0 0 0

Medium 0 0 0 0 0 0

Minor 6 0 0 2 0 4

Informational 6 0 0 0 0 6

Discussion 0 0 0 0 0 0

SaitaMask Security Assessment

mailto:git@gitlab.com
mailto:git@gitlab.com

Audit Scope

ID File SHA256 Checksum

MSM
projects/SaitaMask/saitamask-v1-core/contracts/Migrations.s

ol
4fd6092bdfa8b42f19d535c5ac69c4323b0b89471

7c699e58d5552eeabd04cd4

SVE
projects/SaitaMask/saitamask-v1-core/contracts/SaitamaskV1

ERC20.sol
6c3aa1127016c57f5a9292129636b16f33f805fcd

6b90c1e11352fca3d21b2f0

SVF
projects/SaitaMask/saitamask-v1-core/contracts/SaitamaskV1

Factory.sol
4dd15c2fbc8a9e837e5b36920a21219de20f08d7

9f126341cfc0c622f6870723

SVP
projects/SaitaMask/saitamask-v1-core/contracts/SaitamaskV1

Pair.sol
d5a4ae472a3d07ae8b606cf8cd830400abf50d63

d201472e0919d3e0a97abd24

BSM
projects/SaitaMask/saitamask-v1-periphery/contracts/librarie

s/Babylonian.sol
55f7f97f332b408835ff07a374bef0a8ef698abe282

de76a259f2ea6b7d210b4

SVL
projects/SaitaMask/saitamask-v1-periphery/contracts/librarie

s/SaitamaskV1Library.sol
540b508bf172c6b78776d91fe70f4e9ac17c816c0

d2ca07ae4c993555880633b

SVM
projects/SaitaMask/saitamask-v1-periphery/contracts/librarie

s/SaitamaskV1LiquidityMathLibrary.sol
8735ef8f74fd58a490f40cd5660ffb403fb997357f2

8765c9f7362fabccd0719

SVO
projects/SaitaMask/saitamask-v1-periphery/contracts/librarie

s/SaitamaskV1OracleLibrary.sol
e634ed159a1bf2ad9b8af0b6dcec3ec56bc2f28b1

6515a0ffa4ffde8fed78464

THS
projects/SaitaMask/saitamask-v1-periphery/contracts/librarie

s/TransferHelper.sol
22b87fd425d590e533ab7e52478cf72bdc4bde26

72e0977c7eff7742e8f0737d

SVS
projects/SaitaMask/saitamask-v1-periphery/contracts/Saitama

skV1Migrator.sol
3fbbccd15b4fcf6324e61719a630fe06a048456db

c982879e0ac301598e79e76

SVR
projects/SaitaMask/saitamask-v1-periphery/contracts/Saitama

skV1Router01.sol
e89975e4a015bd2782977bc21ffbabe91cfcc59e7

a4b6a6c503394cb28f5b402

SVC
projects/SaitaMask/saitamask-v1-periphery/contracts/Saitama

skV1Router02.sol
9cb30569401c20226d7096135b2036f4487e101c

d5de6d4df2b4a1d646acbb75

WET
projects/SaitaMask/saitamask-v1-periphery/contracts/WETH.s

ol
a847d003c6497f43e244f4c2e2690a34313e96217

e69db097ae839c573db1b7f

SaitaMask Security Assessment

Findings

ID Title Category Severity Status

SVE-01 Missing Input Validation Volatile Code Minor Resolved

SVE-02 Declaration Naming Convention Coding Style Informational Resolved

SVF-01 Unnecessary Array as Counter
Gas

Optimization
Informational Resolved

SVF-02 Missing Emit Events Coding Style Informational Resolved

SVP-01 Divide by Zero Logical Issue Minor Resolved

SVR-01 Missing Input Validation Volatile Code Minor Resolved

SVR-02
Proper Usage of require And assert

Functions
Coding Style Informational Resolved

SVR-03 Incompatibility With Deflationary Tokens Logical Issue Minor Acknowledged

SVS-01 Missing Input Validation Volatile Code Minor Resolved

SVS-02
Proper Usage of require And assert

Functions
Coding Style Informational Resolved

SVS-03 Incompatibility With Deflationary Tokens Logical Issue Minor Acknowledged

WET-01 Declaration Naming Convention Coding Style Informational Resolved

SaitaMask Security Assessment

12
Total Issues

Critical 0 (0.00%)

Major 0 (0.00%)

Medium 0 (0.00%)

Minor 6 (50.00%)

Informational 6 (50.00%)

Discussion 0 (0.00%)

SVE-01 | Missing Input Validation

Category Severity Location Status

Volatile

Code
Minor

projects/SaitaMask/saitamask-v1-core/contracts/SaitamaskV1ERC20.sol: 46, 5

2, 57
Resolved

Description

The given input is missing the check for the non-zero address.

Recommendation

We advise adding the check for the passed-in values to prevent unexpected error as below:

4646 functionfunction _burn_burn((addressaddress fromfrom,, uintuint value value)) internalinternal {{

4747 requirerequire((fromfrom !=!= addressaddress((00)),, "burn from zero address!""burn from zero address!"));;

4848 balanceOf balanceOf[[fromfrom]] == balanceOf balanceOf[[fromfrom]]..subsub((valuevalue));;

4949 totalSupply totalSupply == totalSupply totalSupply..subsub((valuevalue));;

5050 emitemit TransferTransfer((fromfrom,, addressaddress((00)),, value value));;

5151 }}

5252 functionfunction _approve_approve((addressaddress owner owner,, addressaddress spender spender,, uintuint value value)) privateprivate {{

5353 requirerequire((owner owner !=!= addressaddress((00)),, "owner is zero address!""owner is zero address!"));;

5454 requirerequire((spender spender !=!= addressaddress((00)),, "spender is zero address!""spender is zero address!"));;

5555 allowance allowance[[ownerowner]][[spenderspender]] == value value;;

5656 emitemit ApprovalApproval((ownerowner,, spender spender,, value value));;

5757 }}

5757 functionfunction _transfer_transfer((addressaddress fromfrom,, addressaddress to to,, uintuint value value)) privateprivate {{

5858 requirerequire((fromfrom !=!= addressaddress((00)),, "from is zero address!""from is zero address!"));;

5959 requirerequire((to to !=!= addressaddress((00)),, "to is zero address!""to is zero address!"));;

6060 balanceOf balanceOf[[fromfrom]] == balanceOf balanceOf[[fromfrom]]..subsub((valuevalue));;

6161 balanceOf balanceOf[[toto]] == balanceOf balanceOf[[toto]]..addadd((valuevalue));;

6262 emitemit TransferTransfer((fromfrom,, to to,, value value));;

6363 }}

Alleviation

As per commit 82604f2f2414b9deb98a29ca6d32c86b29904244 , the affected functions are now checking for

the non-zero address.

SaitaMask Security Assessment

SVE-02 | Declaration Naming Convention

Category Severity Location Status

Coding

Style
Informational

projects/SaitaMask/saitamask-v1-core/contracts/SaitamaskV1ERC20.so

l: 9~11
Resolved

Description

The linked declarations do not conform to the Solidity style guide with regards to its naming convention.

Particularly:

camelCase : Should be applied to function names, argument names, local and state variable names,

modifiers

UPPER_CASE : Should be applied to constant variables

CapWords : Should be applied to contract names, struct names, event names and enums

Recommendation

We advise that the linked variable and function names are adjusted to properly conform to Solidity's

naming convention.

Alleviation

As per commits ba62ee0a2d481c171332c1664f52c82c370627ed and

82604f2f2414b9deb98a29ca6d32c86b29904244 , the highlighted constants are now following the naming

convention.

SaitaMask Security Assessment

https://solidity.readthedocs.io/en/v0.7.3/style-guide.html#naming-conventions

SVF-01 | Unnecessary Array as Counter

Category Severity Location Status

Gas

Optimization
Informational

projects/SaitaMask/saitamask-v1-core/contracts/SaitamaskV1Factor

y.sol: 12, 20, 37, 38
Resolved

Description

The usage of allPairs array is as a counter to maintain the number of created pairs.

Recommendation

We advise the client to replace the allPairs with a simple uint type counter to store the number of pairs

created.

Alleviation

As per commit 82604f2f2414b9deb98a29ca6d32c86b29904244 , the allPairs array has been substituted

by the pairsCount unsigned integer.

SaitaMask Security Assessment

SVF-02 | Missing Emit Events

Category Severity Location Status

Coding

Style
Informational

projects/SaitaMask/saitamask-v1-core/contracts/SaitamaskV1Factory.s

ol: 41, 46
Resolved

Description

The function that affects the status of sensitive variables should be able to emit events as notifications.

setFeeTo()

setFeeToSetter()

Recommendation

We advise the client to consider adding events for sensitive actions, and emit them in the function.

Alleviation

As per commit 82604f2f2414b9deb98a29ca6d32c86b29904244 , the setFeeTo() and setFeeToSetter()

functions are now emitting events.

SaitaMask Security Assessment

SVP-01 | Divide by Zero

Category Severity Location Status

Logical

Issue
Minor

projects/SaitaMask/saitamask-v1-core/contracts/SaitamaskV1Pair.sol: 143~14

5
Resolved

Description

If the value of totalSupply is 0, the following two division operations will fail due to the divide by 0 error,

which ultimately make the invocation to burn() function fail.

144144 amount0 amount0 == liquidity liquidity..mulmul((balance0balance0)) // _totalSupply _totalSupply;; // using balances ensures pro-rata// using balances ensures pro-rata
distributiondistribution

145145 amount1 amount1 == liquidity liquidity..mulmul((balance1balance1)) // _totalSupply _totalSupply;; // using balances ensures pro-rata// using balances ensures pro-rata
distributiondistribution

Recommendation

We advise the client to add the following validation in the function burn()

134134 functionfunction burnburn((addressaddress to to)) externalexternal lock lock returnsreturns ((uintuint amount0 amount0,, uintuint amount1 amount1)) {{

135135 		 requirerequire((totalSupply totalSupply !=!= 00,, "The value of totalSupply must not be 0""The value of totalSupply must not be 0"));;

136136

137137 }}

Alleviation

As per commit 82604f2f2414b9deb98a29ca6d32c86b29904244 , the burn function is now checking whether

the total supply is zero or not.

SaitaMask Security Assessment

SVR-01 | Missing Input Validation

Category Severity Location Status

Volatile

Code
Minor

projects/SaitaMask/saitamask-v1-periphery/contracts/SaitamaskV1Router01.so

l: 21~22
Resolved

Description

The given input is missing the check for the non-zero address.

Recommendation

We advise adding the check for the passed-in values to prevent unexpected error as below:

2020 constructorconstructor((addressaddress _factory _factory,, addressaddress _WETH _WETH)) publicpublic {{

2121 		 requirerequire((_factory _factory !=!= addressaddress((00)),,"_factory should not be address(0)""_factory should not be address(0)"));;

2222 		 requirerequire((_WETH _WETH !=!= addressaddress((00)),,"_WETH should not be address(0)""_WETH should not be address(0)"));;

2323 factory factory == _factory _factory;;

2424 WETH WETH == _WETH _WETH;;

2525 }}

Alleviation

As per commit ba62ee0a2d481c171332c1664f52c82c370627ed , the constructor function is now making

sure that the _factory and _WETH addresses are not equal to the zero address.

SaitaMask Security Assessment

SVR-02 | Proper Usage of require And assert Functions

Category Severity Location Status

Coding

Style
Informational

projects/SaitaMask/saitamask-v1-periphery/contracts/SaitamaskV1Router

01.sol: 214, 256, 93, 52, 26
Resolved

Description

The assert() function should only be used to test for internal errors, and to check invariants. The

require() function should be used to ensure valid conditions, such as inputs, or contract state variables

are met, or to validate return values from calls to external contracts.

Recommendation

We advise the client using the require() function, along with a custom error message when the condition

fails, instead of the assert() function.

Alleviation

As per commit ba62ee0a2d481c171332c1664f52c82c370627ed , the SaitamaskV1Router02.sol is now

using require() instead of assert() .

SaitaMask Security Assessment

SVR-03 | Incompatibility With Deflationary Tokens

Category Severity Location Status

Logical

Issue
Minor

projects/SaitaMask/saitamask-v1-periphery/contracts/SaitamaskV1Router0

1.sol: 70~71, 91, 109
Acknowledged

Description

When users add or remove LP tokens into the router, and the mint and burn operations are performed.

When transferring standard ERC20 deflationary tokens, the input amount may not be equal to the received

amount due to the charged transaction fee. As a result, the amount inconsistency will occur and the

transaction may fail due to the validation checks.

Recommendation

We advise the client to regulate the set of LP tokens supported and add necessary mitigation mechanisms

to keep track of accurate balances if there is a need to support deflationary tokens.

SaitaMask Security Assessment

SVS-01 | Missing Input Validation

Category Severity Location Status

Volatile

Code
Minor

projects/SaitaMask/saitamask-v1-periphery/contracts/SaitamaskV1Router02.so

l: 24~25
Resolved

Description

The given input is missing the check for the non-zero address.

Recommendation

We advise adding the check for the passed-in values to prevent unexpected error as below:

2323 constructorconstructor((addressaddress _factory _factory,, addressaddress _WETH _WETH)) publicpublic {{

2424 		 requirerequire((_factory _factory !=!= addressaddress((00)),,"_factory should not be address(0)""_factory should not be address(0)"));;

2525 		 requirerequire((_WETH _WETH !=!= addressaddress((00)),,"_WETH should not be address(0)""_WETH should not be address(0)"));;

2626 factory factory == _factory _factory;;

2727 WETH WETH == _WETH _WETH;;

2828 }}

Alleviation

As per commit ba62ee0a2d481c171332c1664f52c82c370627ed , the constructor function is now making

sure that the _factory and _WETH addresses are not equal to the zero address.

SaitaMask Security Assessment

SVS-02 | Proper Usage of require And assert Functions

Category Severity Location Status

Coding

Style
Informational

projects/SaitaMask/saitamask-v1-periphery/contracts/SaitamaskV1Rout

er02.sol: 29
Resolved

Description

The assert() function should only be used to test for internal errors, and to check invariants. The

require() function should be used to ensure valid conditions, such as inputs, or contract state variables

are met, or to validate return values from calls to external contracts.

Recommendation

We advise the client using the require() function, along with a custom error message when the condition

fails, instead of the assert() function.

Alleviation

As per commit ba62ee0a2d481c171332c1664f52c82c370627ed , the SaitamaskV1Router02.sol is now

using require() instead of assert() .

SaitaMask Security Assessment

SVS-03 | Incompatibility With Deflationary Tokens

Category Severity Location Status

Logical

Issue
Minor

projects/SaitaMask/saitamask-v1-periphery/contracts/SaitamaskV1Router0

2.sol: 73~74, 94, 113
Acknowledged

Description

When users add or remove LP tokens into the router, and the mint and burn operations are performed.

When transferring standard ERC20 deflationary tokens, the input amount may not be equal to the received

amount due to the charged transaction fee. As a result, the amount inconsistency will occur and the

transaction may fail due to the validation checks.

Recommendation

We advise the client to regulate the set of LP tokens supported and add necessary mitigation mechanisms

to keep track of accurate balances if there is a need to support deflationary tokens.

SaitaMask Security Assessment

WET-01 | Declaration Naming Convention

Category Severity Location Status

Coding

Style
Informational

projects/SaitaMask/saitamask-v1-periphery/contracts/WETH.sol: 23~2

5
Resolved

Description

The linked declarations do not conform to the Solidity style guide with regards to its naming convention.

Particularly:

camelCase : Should be applied to function names, argument names, local and state variable names,

modifiers

UPPER_CASE : Should be applied to constant variables

CapWords : Should be applied to contract names, struct names, event names and enums

Recommendation

We advise that the linked variable and function names are adjusted to properly conform to Solidity's

naming convention.

Alleviation

As per commits ba62ee0a2d481c171332c1664f52c82c370627ed and

82604f2f2414b9deb98a29ca6d32c86b29904244 , the highlighted constants are now following the naming

convention.

SaitaMask Security Assessment

https://solidity.readthedocs.io/en/v0.7.3/style-guide.html#naming-conventions

Appendix

Finding Categories

Gas Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more optimal

EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Logical Issue

Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that may

result in a vulnerability.

Coding Style

Coding Style findings usually do not affect the generated byte-code but rather comment on how to make

the codebase more legible and, as a result, easily maintainable.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2

with digest size of 256 bits) digest of the content of each file hosted in the listed source repository under

the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command

against the target file.

SaitaMask Security Assessment

Disclaimer
This report is subject to the terms and conditions (including without limitation, description of services,

confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of

services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the

Agreement. This report provided in connection with the Services set forth in the Agreement shall be used

by the Company only to the extent permitted under the terms and conditions set forth in the Agreement.

This report may not be transmitted, disclosed, referred to or relied upon by any person for any purposes,

nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or

team. This report is not, nor should be considered, an indication of the economics or value of any

“product” or “asset” created by any team or project that contracts CertiK to perform a security

assessment. This report does not provide any warranty or guarantee regarding the absolute bug-free

nature of the technology analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any

particular project. This report in no way provides investment advice, nor should be leveraged as investment

advice of any sort. This report represents an extensive assessing process intending to help our customers

increase the quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is

that each company and individual are responsible for their own due diligence and continuous security.

CertiK’s goal is to help reduce the attack vectors and the high level of variance associated with utilizing

new and consistently changing technologies, and in no way claims any guarantee of security or

functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing

development. You agree that your access and/or use, including but not limited to any services, reports,

and materials, will be at your sole risk on an as-is, where-is, and as-available basis. Cryptographic tokens

are emergent technologies and carry with them high levels of technical risk and uncertainty. The

assessment reports could include false positives, false negatives, and other unpredictable results. The

services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS,

OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS

SaitaMask Security Assessment

AVAILABLE” AND WITH ALL FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE

MAXIMUM EXTENT PERMITTED UNDER APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL

WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE

SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT LIMITING THE FOREGOING,

CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK

MAKES NO WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT,

WORK PRODUCT, OR OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF,

WILL MEET CUSTOMER’S OR ANY OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED

RESULT, BE COMPATIBLE OR WORK WITH ANY SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE

SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL CODE, OR ERROR-FREE. WITHOUT LIMITATION

TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR UNDERTAKING, AND MAKES NO

REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S REQUIREMENTS,

ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY

PERFORMANCE OR RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR

DEFECTS CAN OR WILL BE CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY,

RELIABILITY, OR CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE

SERVICE. CERTIK WILL ASSUME NO LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES,

OR INACCURACIES OF CONTENT AND MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND

INCURRED AS A RESULT OF THE USE OF ANY CONTENT, OR (II) ANY PERSONAL INJURY OR

PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING FROM CUSTOMER’S ACCESS TO

OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY

OF OR CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE

THIRD-PARTY OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY

PROVIDED TO CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY

PURPOSE NOT SPECIFICALLY IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO,

ANY OTHER PERSON WITHOUT CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR

OTHER BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING

SaitaMask Security Assessment

MATERIALS AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST

CERTIK WITH RESPECT TO SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING

MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE

SOLELY FOR THE BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING

ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH

REPRESENTATIONS AND WARRANTIES AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF

CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH REPRESENTATIONS OR WARRANTIES OR

ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION UNDER THIS AGREEMENT OR

OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS

OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX,

LEGAL, REGULATORY, OR OTHER ADVICE.

SaitaMask Security Assessment

About
Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia

University, CertiK is a leading blockchain security company that serves to verify the security and

correctness of smart contracts and blockchain-based protocols. Through the utilization of our world-class

technical expertise, alongside our proprietary, innovative tech, we’re able to support the success of our

clients with best-in-class security, all whilst realizing our overarching vision; provable trust for all

throughout all facets of blockchain.

SaitaMask Security Assessment

