
Security Assessment

ShibaSwap
Jul 9th, 2021

Table of Contents
Summary

Overview
Project Summary

Audit Summary

Vulnerability Summary

Audit Scope

Findings
BBC-01 : Lack Of Input Validation

BBC-02 : Variable Declare as `Immutable`

BBD-01 : Centralization Risk

BLC-01 : Lack Of Input Validation

BLC-02 : Variable Declare as `Immutable`

BLK-01 : Potential Edge Case in Claimable Amount

BLK-02 : Centralization Risk

BLK-03 : Lack Of Input Validation

BSC-01 : Lack Of Input Validation

BSC-02 : Variable Declare as `Immutable`

BTC-01 : Delegation Should Move Along Fund Transfer

BTC-02 : Lack of Check for Integer Overflow

DBD-01 : Centralization Risk

DBD-02 : Lack of Event Emission for Significant Transactions

MDD-01 : Centralization Risk

MTL-01 : Centralization Risk

MTL-02 : Lack of Check for Integer Overflow

MTL-03 : Unrestricted Privilege Function

TCK-01 : Incorrect Reference URL In Comment

TDC-01 : add() Function Not Restricted

TDC-02 : Centralization Risk

TDC-03 : Over Minted Token

TDC-04 : Incompatibility With Deflationary Tokens

TDC-05 : Lack of Event Emission for Significant Transactions

TDC-06 : Misleading Result of Multiplier Calculation

TDC-07 : Inconsistent Checks-effects-interactions Pattern

TDC-08 : Potential Loss of Pool Rewards

ShibaSwap Security Assessment

TFC-01 : Centralization Risk

TFC-02 : Lack of Event Emission for Significant Transactions

TFC-03 : Potential Sandwich Attack

UVF-01 : Centralization Risk

UVF-02 : Reusable Code

UVF-03 : Lack of Event Emission for Significant Transactions

UVP-01 : Lack of Input Validation

Appendix

Disclaimer

About

ShibaSwap Security Assessment

Summary
This report has been prepared for Shiba to discover issues and vulnerabilities in the source code of the

ShibaSwap project as well as any contract dependencies that were not part of an officially recognized

library. A comprehensive examination has been performed, utilizing Static Analysis and Manual Review

techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced

by industry leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend

addressing these findings to ensure a high level of security standards and industry practices.
We suggest

recommendations that could better serve the project from the security perspective:

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases given they are currently missing in the

repository;

Provide more comments per each function for readability, especially contracts are verified in public;

Provide more transparency on privileged activities once the protocol is live.

ShibaSwap Security Assessment

Overview

Project Summary

Project Name ShibaSwap

Platform Ethereum

Language Solidity

Codebase https://github.com/KaalDhairya/shibaswapv1/tree/SSwapv1-Certik

Commit

1305e7c127ea1d6dba78bd69aab367f53f8cd97e
9b182db842a581c1c793d40dce4d738ed14dcffb
51d237e488435b7f74588ccbb497b0d51aaf6764
949d75cc4bd8d23a0dc34ccb75f586ae01123cb6
6c6fed3662f811cfe95d3b49be730ce53c65fe95
58e2df72d15ed8e38074f98053d2281339d11169
22d2f0372a50a7d9e524b447ed9a91fc4e4212e6

Audit Summary

Delivery Date Jul 09, 2021

Audit Methodology Static Analysis, Manual Review

Key Components

Vulnerability Summary

Vulnerability Level Total Pending Partially Resolved Resolved Acknowledged Declined

Critical 0 0 0 0 0 0

Major 8 0 0 8 0 0

Medium 1 0 0 1 0 0

Minor 11 0 1 10 0 0

Informational 14 0 0 14 0 0

Discussion 0 0 0 0 0 0

ShibaSwap Security Assessment

https://github.com/KaalDhairya/shibaswapv1/tree/SSwapv1-Certik

Audit Scope

ID file SHA256 Checksum

ShibaSwap Security Assessment

ShibaSwap Overview

The ShibaSwap Protocol is a part of Shiba token's decentralized ecosystem. It develops staking,

distribution, and swapping features for the ecosystem.

The staking system is mainly implemented by the contracts:

BoneToken.sol

BuryBone.sol

BuryLeash.sol

BuryShib.sol

A new token, BONE, is introduced in the system. Users can deposit their BONE/LEASH/SHIB tokens to

these contracts and get corresponding tBONE/xLEASH/xSHIB.

The distribution system is mainly implemented by the contracts:

BoneLocker.sol

DevBoneDistributor.sol

MultiTokenLocker.sol

TopDog.sol

merkleDistributors/XXXMerkleDistributor.sol

Some of the rewards will be sent to the locking contract BoneLocker . These rewards will not be

withdrawable until reaching the end of the locking period. Other rewards will be distributed directly to dev

and user accounts.

The swapping system is mainly implemented by the contracts:

Migrator.sol

ShibaSushiFetch.sol

ShibaUniFetch.sol

TreasureFinder.sol

uniswapv2/UniswapV2ERC20.sol

uniswapv2/UniswapV2Factory.sol

ShibaSwap Security Assessment

uniswapv2/UniswapV2Pair.sol

uniswapv2/UniswapV2Router02.sol

This system allows users to migrate their LP tokens from their original pairing pools to the pairing pools

provided by Shiba. In addition, it allows users to perform regular operations in pairing pools, such as

adding/removing liquidity and swapping between different assets.

Shibaswap Architecture & Fee Models

ShibaSwap, a decentralized cryptocurrency exchange where users can exchange tokens. The diagram

below illustrates how the unique flagship tokens, fee model, and incentivized mechanism.

Contract Dependencies

ShibaSwap Security Assessment

In ShibaSwap, the system inherits or uses a few of the depending injection contracts or addresses to fulfill

the need of its complex business logic.

bone for the contract BasicBoneDistributor ;

boneToken for the contract BoneLocker ;

bone for the contract BuryBone ;

LEASH for the contract BuryLeash ;

shib for the contract BuryShib ;

bone for the contract DevBoneDistributor ;

chef , oldFactory , factory for the contract Migrator ;

oldRouter and router for the contract ShibaSushiFetch ;

oldRouter and router for the contract ShibaSushiFetch ;

bone , boneLocker , migrator and poolInfo[].lpToken for the contract TopDog ;

factory , bone , shiba , leash and all other tokens used in swappings for the contract

TreasureFinder ;

token for the contract boneMerkleDistributor ;

token for the contract daiMerkleDistributor ;

token for the contract usdcMerkleDistributor ;

token for the contract usdtMerkleDistributor ;

token for the contract wbtcMerkleDistributor ;

token for the contract wethMerkleDistributor ;

token for the contract xLeashBoneMerkleDistributor ;

token for the contract xShibBoneMerkleDistributor ;

factory , token0 and token1 for the contract UniswapV2Pair ;

factory and WETH for the contract UniswapV2Router02 .

We assume these contracts or addresses are valid and non-vulnerable actors and implementing proper

logic to collaborate with the current project.

Privileged Roles

ShibaSwap Security Assessment

To set up the project correctly, improve overall project quality and preserve upgradability, the following

roles are adopted in the codebase:

owner is adopted to withdraw bone in the contract BasicBoneDistributor ;

owner is adopted to lock token and withdraw all token in the contract BoneLocker ;

owner is adopted to the mint token in the contract BoneToken ;

owner is adopted to set wallet addresses and percentage of distributions in the contract

DevBoneDistributor ;

owner is adopted to withdraw tokens in the contract SwapRewardDistributor ;

admin is adopted to queue, cancel and execute transactions in the contract Timelock ;

owner is adopted to set up a new pool, update pool configurations, change token distributors,

modify distribution percentages, update locking period and withdraw tokens from the locker in the

contract TopDog .

owner is adopted to update Merkle root and withdraw tokens in the contract

boneMerkleDistributor ;

owner is adopted to freeze/unfreeze the contract, update Merkle root and withdraw tokens in the

contract daiMerkleDistributor ;

owner is adopted to freeze/unfreeze the contract, update Merkle root and withdraw tokens in the

contract usdcMerkleDistributor ;

owner is adopted to freeze/unfreeze the contract, update Merkle root and withdraw tokens in the

contract usdtMerkleDistributor ;

owner is adopted to freeze/unfreeze the contract, update Merkle root and withdraw tokens in the

contract wbtcMerkleDistributor ;

owner is adopted to freeze/unfreeze the contract, update Merkle root and withdraw tokens in the

contract wethMerkleDistributor ;

owner is adopted to freeze/unfreeze the contract, update Merkle root and withdraw tokens in the

contract xLeashBoneMerkleDistributor ;

owner is adopted to freeze/unfreeze the contract, update Merkle root and withdraw tokens in the

contract xShibBoneMerkleDistributor ;

feeToSetter is adopted to set fee recipient, migratory, and fees in the contract UniswapV2Factory .

ShibaSwap Security Assessment

To improve the trustworthiness of the project, dynamic runtime updates in the project should be notified to

the community. Furthermore, any plan to invoke the aforementioned functions should also be considered

to move to the execution queue of the Timelock contract.

According to the Shiba Inu Ecosystem Woof Paper, Multisig wallets will be used for privileged roles. The

addresses are listed as follows:

MULTISIG ADDRESS: 0x38e1d4314a38c60C6ab3b98b0a89a4411D839d44

@OMEGA_HYPERION: 0x399EC033EE08241512212a4C388a76C9d3aB1c00

@KAAL_DHAIRYA: 0xBab4F3e701F6d2e009Af3C7f1eF2e7dD68225E96

@HYROSHI_KIPA: 0x80e32DEfc16ce8f78d09E6ef7065AfE031bAcab7

@JUNE_HORLA: 0x6948cBbEa74549062050a164d8fc4cFF27E82084

@SISLEY_ARGONAUT: 0xe166c948b8aED157575B6792019cdeE8a5177dcE

MULTISIG EMERGENCY ADDRESS: 0x4267A3aD7d20c2396ebb0Fe72119984F7073761C

@OMEGA_HYPERION: 0x399EC033EE08241512212a4C388a76C9d3aB1c00

@KAAL_DHAIRYA: 0xBab4F3e701F6d2e009Af3C7f1eF2e7dD68225E96

@HYROSHI_KIPA: 0x80e32DEfc16ce8f78d09E6ef7065AfE031bAcab7

@JUNE_HORLA: 0x6948cBbEa74549062050a164d8fc4cFF27E82084

@SISLEY_ARGONAUT: 0xe166c948b8aED157575B6792019cdeE8a5177dcE

@COUNTER_NOMAD: 0x8E1B6Af660C14f5CC28727f23fCcBC977bd89B6B

@SHINATO_SAMA: 0x6b162Bc637bAAe0DAC38c200D9727fc679a0cCE4

@MISS_PHOENIX_SHIB: 0x30f45F7b08164D2Dd38D9Cdd8509b1E580432d04

@BURF_DURF: 0x5D471E3a033EaF7eE0cA303405978Da4c2cdAD33

Multisig, which is used for devWallet , requires 3 out of 5 signatures for a transaction to be approved.

Emergency Multisig, which is used for all other privileged roles, requires 6 out of 9 signatures for a

transaction to be approved.

ShibaSwap Security Assessment

https://github.com/shytoshikusama/woofwoofpaper/raw/main/SHIBA_INU_WOOF_WOOF.pdf
https://etherscan.io/address/0x38e1d4314a38c60C6ab3b98b0a89a4411D839d44
https://etherscan.io/address/0x399EC033EE08241512212a4C388a76C9d3aB1c00
https://etherscan.io/address/0xBab4F3e701F6d2e009Af3C7f1eF2e7dD68225E96
https://etherscan.io/address/0x80e32DEfc16ce8f78d09E6ef7065AfE031bAcab7
https://etherscan.io/address/0x6948cBbEa74549062050a164d8fc4cFF27E82084
https://etherscan.io/address/0xe166c948b8aED157575B6792019cdeE8a5177dcE
https://etherscan.io/address/0x4267A3aD7d20c2396ebb0Fe72119984F7073761C
https://etherscan.io/address/0x399EC033EE08241512212a4C388a76C9d3aB1c00
https://etherscan.io/address/0xBab4F3e701F6d2e009Af3C7f1eF2e7dD68225E96
https://etherscan.io/address/0x80e32DEfc16ce8f78d09E6ef7065AfE031bAcab7
https://etherscan.io/address/0x6948cBbEa74549062050a164d8fc4cFF27E82084
https://etherscan.io/address/0xe166c948b8aED157575B6792019cdeE8a5177dcE
https://etherscan.io/address/0x8E1B6Af660C14f5CC28727f23fCcBC977bd89B6B
https://etherscan.io/address/0x6b162Bc637bAAe0DAC38c200D9727fc679a0cCE4
https://etherscan.io/address/0x30f45F7b08164D2Dd38D9Cdd8509b1E580432d04
https://etherscan.io/address/0x5D471E3a033EaF7eE0cA303405978Da4c2cdAD33

Findings

ID Title Category Severity Status

BBC-01 Lack Of Input Validation Volatile Code Informational Resolved

BBC-02 Variable Declare as Immutable Gas Optimization Informational Resolved

BBD-01 Centralization Risk
Centralization /
Privilege

Minor Resolved

BLC-01 Lack Of Input Validation Volatile Code Informational Resolved

BLC-02 Variable Declare as Immutable Gas Optimization Informational Resolved

BLK-01 Potential Edge Case in Claimable Amount Logical Issue Minor Resolved

BLK-02 Centralization Risk
Centralization /
Privilege

Major Resolved

BLK-03 Lack Of Input Validation Volatile Code Informational Resolved

BSC-01 Lack Of Input Validation Volatile Code Informational Resolved

BSC-02 Variable Declare as Immutable Gas Optimization Informational Resolved

BTC-01
Delegation Should Move Along Fund
Transfer

Logical Issue Major Resolved

BTC-02 Lack of Check for Integer Overflow
Mathematical
Operations

Informational Resolved

DBD-01 Centralization Risk
Centralization /
Privilege

Minor Resolved

ShibaSwap Security Assessment

34
Total Issues

Critical 0 (0.00%)

Major 8 (23.53%)

Medium 1 (2.94%)

Minor 11 (32.35%)

Informational 14 (41.18%)

Discussion 0 (0.00%)

ID Title Category Severity Status

DBD-02
Lack of Event Emission for Significant
Transactions

Coding Style Informational Resolved

MDD-01 Centralization Risk
Centralization /
Privilege

Major Resolved

MTL-01 Centralization Risk
Centralization /
Privilege

Major Resolved

MTL-02 Lack of Check for Integer Overflow
Mathematical
Operations

Minor Resolved

MTL-03 Unrestricted Privilege Function Logical Issue Medium Resolved

TCK-01 Incorrect Reference URL In Comment Coding Style Informational Resolved

TDC-01 add() Function Not Restricted Volatile Code Major Resolved

TDC-02 Centralization Risk
Centralization /
Privilege

Minor Resolved

TDC-03 Over Minted Token Logical Issue Minor Resolved

TDC-04 Incompatibility With Deflationary Tokens Logical Issue Minor Resolved

TDC-05
Lack of Event Emission for Significant
Transactions

Coding Style Informational Resolved

TDC-06 Misleading Result of Multiplier Calculation Logical Issue Minor Resolved

TDC-07
Inconsistent Checks-effects-interactions
Pattern

Logical Issue Major Resolved

TDC-08 Potential Loss of Pool Rewards Logical Issue Minor Resolved

TFC-01 Centralization Risk
Centralization /
Privilege

Minor Resolved

TFC-02
Lack of Event Emission for Significant
Transactions

Coding Style Informational Resolved

TFC-03 Potential Sandwich Attack Logical Issue Minor
Partially
Resolved

UVF-01 Centralization Risk
Centralization /
Privilege

Major Resolved

ShibaSwap Security Assessment

ID Title Category Severity Status

UVF-02 Reusable Code Gas Optimization Informational Resolved

UVF-03
Lack of Event Emission for Significant
Transactions

Coding Style Informational Resolved

UVP-01 Lack of Input Validation Volatile Code Major Resolved

ShibaSwap Security Assessment

BBC-01 | Lack Of Input Validation

Category Severity Location Status

Volatile Code Informational projects/shibaswapv1/contracts/BuryBone.sol: 18 Resolved

Description

In the contract BuryBone , the given constructor input _bone is missing a sanity check for ensuring a non-

zero address will assign.

Recommendation

We recommend adding check for the passed-in value is non-zero to prevent any unexpected error.

Example:

requirerequire((addressaddress((_bone_bone)) !=!= addressaddress((00)),, "_bone is a zero address""_bone is a zero address"));;

Alleviation

[Shiba]: The team heeded our advice and resolved this issue in the commit

b4e8234087b1bc52f14c0e5e94115ca3fc8e47bb .

ShibaSwap Security Assessment

BBC-02 | Variable Declare as Immutable

Category Severity Location Status

Gas Optimization Informational projects/shibaswapv1/contracts/BuryBone.sol: 15 Resolved

Description

The variable bone assigned in the constructor can be declared as immutable . Immutable state variables

can be assigned during contract creation but will remain constant throughout the lifetime of a deployed

contract. A big advantage of immutable variables is that reading them is significantly cheaper than reading

from regular state variables since immutable will not be stored in storage. Still, values will directly insert

the values into the runtime code.

Recommendation

We recommend using an immutable state variable for bone .

1515 IERC20 IERC20 publicpublic immutable bone immutable bone;;

Alleviation

[Shiba]: The team heeded our advice and resolved this issue in the commit

b4e8234087b1bc52f14c0e5e94115ca3fc8e47bb .

ShibaSwap Security Assessment

BBD-01 | Centralization Risk

Category Severity Location Status

Centralization /
Privilege

Minor
projects/shibaswapv1/contracts/BasicBoneDistributor.sol: 20~2
1

Resolved

Description

In the contract bone , the role owner has authority over the following function:

withdrawBone() : withdraw the ERC20 token bone with the arbitrary amount to any _destination

address.

Any compromise to the account owner may allow the hacker to take advantage of it and transfer the

withdrawn tokens to an arbitrary address, the _destination address.

As BasicBoneDistributor is an abstract contract, it is highly recommended to follow best practices by

managing and interacting with any contract inheriting from BasicBoneDistributor through a decentralized

mechanism.

For example:

tBoneBoneDistributor()

xLeashBoneDistributor()

xShibBoneDistributor()

Recommendation

We advise the client to carefully manage the owner account's private key to avoid any potential risks of

being hacked. In general, we strongly encourage the centralized privileges or roles in the protocol to be

improved via a decentralized mechanism or via smart-contract-based accounts with enhanced security

practices, e.g. Multisignature wallets.

Indicatively, here are some feasible solutions that would also mitigate the potential risk:

Time-lock with reasonable latency, i.e. 48 hours, for awareness on privileged operations;

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key;

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

ShibaSwap Security Assessment

Alleviation

[Shiba]: The team acknowledges the issue and applied the MultiSig solution in any sensitive privilege

access(i.e., owner role).

The Emergency Multisig members have trusted members of the Community and the Defi environment.

There must be 6 out of 9 signatures from the below addresses for a transaction to be approved.

MULTISIG EMERGENCY ADDRESS: 0x4267A3aD7d20c2396ebb0Fe72119984F7073761C

@OMEGA_HYPERION: 0x399EC033EE08241512212a4C388a76C9d3aB1c00

@KAAL_DHAIRYA: 0xBab4F3e701F6d2e009Af3C7f1eF2e7dD68225E96

@HYROSHI_KIPA: 0x80e32DEfc16ce8f78d09E6ef7065AfE031bAcab7

@JUNE_HORLA: 0x6948cBbEa74549062050a164d8fc4cFF27E82084

@SISLEY_ARGONAUT: 0xe166c948b8aED157575B6792019cdeE8a5177dcE

@COUNTER_NOMAD: 0x8E1B6Af660C14f5CC28727f23fCcBC977bd89B6B

@SHINATO_SAMA: 0x6b162Bc637bAAe0DAC38c200D9727fc679a0cCE4

@MISS_PHOENIX_SHIB: 0x30f45F7b08164D2Dd38D9Cdd8509b1E580432d04

@BURF_DURF: 0x5D471E3a033EaF7eE0cA303405978Da4c2cdAD33

You can find more details about the MultiSig Model include the settings and member's information in the

the Shiba Inu Ecosystem Woof Paper Page 24.

ShibaSwap Security Assessment

https://etherscan.io/address/0x4267A3aD7d20c2396ebb0Fe72119984F7073761C
https://etherscan.io/address/0x399EC033EE08241512212a4C388a76C9d3aB1c00
https://etherscan.io/address/0xBab4F3e701F6d2e009Af3C7f1eF2e7dD68225E96
https://etherscan.io/address/0x80e32DEfc16ce8f78d09E6ef7065AfE031bAcab7
https://etherscan.io/address/0x6948cBbEa74549062050a164d8fc4cFF27E82084
https://etherscan.io/address/0xe166c948b8aED157575B6792019cdeE8a5177dcE
https://etherscan.io/address/0x8E1B6Af660C14f5CC28727f23fCcBC977bd89B6B
https://etherscan.io/address/0x6b162Bc637bAAe0DAC38c200D9727fc679a0cCE4
https://etherscan.io/address/0x30f45F7b08164D2Dd38D9Cdd8509b1E580432d04
https://etherscan.io/address/0x5D471E3a033EaF7eE0cA303405978Da4c2cdAD33
https://github.com/shytoshikusama/woofwoofpaper/raw/main/SHIBA_INU_WOOF_WOOF.pdf

BLC-01 | Lack Of Input Validation

Category Severity Location Status

Volatile Code Informational projects/shibaswapv1/contracts/BuryLeash.sol: 18 Resolved

Description

The given input LEASH is missing the sanity check for the non-zero address in the aforementioned line.

Recommendation

We recommend adding check for the passed-in value is non-zero to prevent any unexpected error.

Example:

 requirerequire((addressaddress((_LEASH_LEASH)) !=!= addressaddress((00)),, "_LEASH is a zero address""_LEASH is a zero address"));;

Alleviation

[Shiba]: The team heeded our advice and resolved this issue in the commit

b4e8234087b1bc52f14c0e5e94115ca3fc8e47bb .

ShibaSwap Security Assessment

BLC-02 | Variable Declare as Immutable

Category Severity Location Status

Gas Optimization Informational projects/shibaswapv1/contracts/BuryLeash.sol: 15 Resolved

Description

The variable LEASH assigned in the constructor can be declared as immutable . Immutable state variables

can be assigned during contract creation but will remain constant throughout the lifetime of a deployed

contract. A big advantage of immutable variables is that reading them is significantly cheaper than reading

from regular state variables since immutable will not be stored in storage. Still, values will directly insert

the values into the runtime code.

Recommendation

We recommend using an immutable state variable for LEASH .

1515 IERC20 IERC20 publicpublic immutable LEASH immutable LEASH;;

Alleviation

[Shiba]: The team heeded our advice and resolved this issue in the commit

b4e8234087b1bc52f14c0e5e94115ca3fc8e47bb .

ShibaSwap Security Assessment

BLK-01 | Potential Edge Case in Claimable Amount

Category Severity Location Status

Logical Issue Minor projects/shibaswapv1/contracts/BoneLocker.sol: 51~55, 73~76 Resolved

Description

In the aforementioned lines, the claimable amount will be affected when the address's role changes

(lockInfoByUser[account][i]._isDev). Therefore, the claimable amount could be different from the token

amount at their unlocking time.

11 functionfunction getClaimableAmountgetClaimableAmount((addressaddress _user _user)) publicpublic viewview returnsreturns((uint256uint256)) {{

22 LockInfo LockInfo[[]] memorymemory lockInfoArrayForUser lockInfoArrayForUser == lockInfoByUser lockInfoByUser[[_user_user]];;

33

44 uint256uint256 lockingPeriodHere lockingPeriodHere == lockingPeriod lockingPeriod;;

55 ifif((lockInfoArrayForUserlockInfoArrayForUser[[ii]].._isDev_isDev)){{

66 lockingPeriodHere lockingPeriodHere == devLockingPeriod devLockingPeriod;;
77 }}

88 forfor ((ii;; i i<<lockInfoArrayForUserlockInfoArrayForUser..lengthlength;; i i++++)){{

99 ifif((now now >=>= ((lockInfoArrayForUserlockInfoArrayForUser[[ii]].._timestamp_timestamp..addadd((lockingPeriodHerelockingPeriodHere)))))){{

1010 	 totalTransferableAmount 	 totalTransferableAmount ==
totalTransferableAmounttotalTransferableAmount..addadd((lockInfoArrayForUserlockInfoArrayForUser[[ii]].._amount_amount));;

1111 }}

1212

1313 }}

1414 returnreturn totalTransferableAmount totalTransferableAmount;;

1515 }}

The following is a potential scenario. Assume that the lockingPeriod is 10 days while devLockingPeriod

is 1 day:

Day 1: A non-dev account receives some locked tokens and expects to unlock them on Day 11.

Lock info is stored at lockInfoByUser[account][0] .

Day 2: The account is set as a dev account. It receives some locked tokens and expects to unlock

them on Day 3. Lock info is stored at lockInfoByUser[account][1] .

Day 3: The account should be able to unlock tokens received on Day 2. However, when it calls

claimAll() , it is still not able to claim these tokens because now < (lockInfoByUser[account]

[0]._timestamp.add(lockingPeriod)) (3 < 1 + 10).

Recommendation

ShibaSwap Security Assessment

We would like to confirm if the above-mentioned case could be a potential edge case in the real-world

scenario.

Alleviation

[Shiba]: The team acknowledged the finding and disagreed on it. The Shiba team confirmed that the

BoneLocker contract's owner is TopDog , where the boneLocker.lock() function is called in two

situations:

for users making a deposit/withdraw (basically harvest);

for the devBoneDistributor address, which is a contract, when updatePool is triggered.

The team will ensure never make the dev address (devBoneDistributor) as any user address, and it will

always be the devBoneDistributor smart contract address. There will be no such case where any address

will be a normal address, then set as a dev address and then gets it token locked as a dev address for less

devLockingPeriod than lockingPeriod . Therefore, an address will either be a dev address or will not be a

dev address.

[CertiK]: We agreed that the issue wouldn't occur if an address will either be a dev address or will not be a

dev address.

ShibaSwap Security Assessment

BLK-02 | Centralization Risk

Category Severity Location Status

Centralization / Privilege Major projects/shibaswapv1/contracts/BoneLocker.sol: 107 Resolved

Description

In the contract BoneLocker , the role owner has the authority over the following function:

emergencyWithdrawOwner() : withdraw all the ERC20 token boneToken to any arbitrary address _to .

Any compromise to the owner account may allow the hacker to take advantage of this and transfer the

withdrawn tokens to an arbitrary address, which is the _to address.

Recommendation

We advise the client to carefully manage the owner account's private key to avoid any potential risks of

being hacked.
In general, we strongly recommend centralized privileges or roles in the protocol to be

improved via a decentralized mechanism or via smart-contract-based accounts with enhanced security

practices, e.g. Multisignature wallets.

Here are some feasible solutions that would also mitigate the potential risk:

Time-lock with reasonable latency, i.e. 48 hours, for awareness on privileged operations;

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key;

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

Alleviation

[Shiba]: The team acknowledges the issue and applied the MultiSig solution in any sensitive privilege

access(i.e., owner role).

The Emergency Multisig members have trusted members of the Community and the Defi environment.

There must be 6 out of 9 signatures from the below addresses for a transaction to be approved.

MULTISIG EMERGENCY ADDRESS: 0x4267A3aD7d20c2396ebb0Fe72119984F7073761C

@OMEGA_HYPERION: 0x399EC033EE08241512212a4C388a76C9d3aB1c00

@KAAL_DHAIRYA: 0xBab4F3e701F6d2e009Af3C7f1eF2e7dD68225E96

@HYROSHI_KIPA: 0x80e32DEfc16ce8f78d09E6ef7065AfE031bAcab7

@JUNE_HORLA: 0x6948cBbEa74549062050a164d8fc4cFF27E82084

ShibaSwap Security Assessment

https://etherscan.io/address/0x4267A3aD7d20c2396ebb0Fe72119984F7073761C
https://etherscan.io/address/0x399EC033EE08241512212a4C388a76C9d3aB1c00
https://etherscan.io/address/0xBab4F3e701F6d2e009Af3C7f1eF2e7dD68225E96
https://etherscan.io/address/0x80e32DEfc16ce8f78d09E6ef7065AfE031bAcab7
https://etherscan.io/address/0x6948cBbEa74549062050a164d8fc4cFF27E82084

@SISLEY_ARGONAUT: 0xe166c948b8aED157575B6792019cdeE8a5177dcE

@COUNTER_NOMAD: 0x8E1B6Af660C14f5CC28727f23fCcBC977bd89B6B

@SHINATO_SAMA: 0x6b162Bc637bAAe0DAC38c200D9727fc679a0cCE4

@MISS_PHOENIX_SHIB: 0x30f45F7b08164D2Dd38D9Cdd8509b1E580432d04

@BURF_DURF: 0x5D471E3a033EaF7eE0cA303405978Da4c2cdAD33

You can find more details about the MultiSig Model include the settings and member's information in the

the Shiba Inu Ecosystem Woof Paper Page 24.

ShibaSwap Security Assessment

https://etherscan.io/address/0xe166c948b8aED157575B6792019cdeE8a5177dcE
https://etherscan.io/address/0x8E1B6Af660C14f5CC28727f23fCcBC977bd89B6B
https://etherscan.io/address/0x6b162Bc637bAAe0DAC38c200D9727fc679a0cCE4
https://etherscan.io/address/0x30f45F7b08164D2Dd38D9Cdd8509b1E580432d04
https://etherscan.io/address/0x5D471E3a033EaF7eE0cA303405978Da4c2cdAD33
https://github.com/shytoshikusama/woofwoofpaper/raw/main/SHIBA_INU_WOOF_WOOF.pdf

BLK-03 | Lack Of Input Validation

Category Severity Location Status

Volatile Code Informational projects/shibaswapv1/contracts/BoneLocker.sol: 113 Resolved

Description

The given input emergencyAddress is missing the sanity check for the non-zero address in the

aforementioned line.

Recommendation

We recommend adding a check that the passed-in value is non-zero to prevent unexpected behavior.

Example:

 requirerequire((_newAddr _newAddr !=!= addressaddress((00)),, "_newAddr is a zero address""_newAddr is a zero address"));;

Alleviation

[Shiba]: The team heeded our advice and resolved this issue in the commit

b4e8234087b1bc52f14c0e5e94115ca3fc8e47bb .

ShibaSwap Security Assessment

BSC-01 | Lack Of Input Validation

Category Severity Location Status

Volatile Code Informational projects/shibaswapv1/contracts/BuryShib.sol: 18 Resolved

Description

The given input _shib is missing the sanity check for the non-zero address in the aforementioned line.

Recommendation

We recommend adding the check for the passed-in values is non-zero to prevent unexpected error.

Example:

 requirerequire((addressaddress((_shib_shib)) !=!= addressaddress((00)),, "_shib is a zero address""_shib is a zero address"));;

Alleviation

[Shiba]: The team heeded our advice and resolved this issue in the commit

b4e8234087b1bc52f14c0e5e94115ca3fc8e47bb .

ShibaSwap Security Assessment

BSC-02 | Variable Declare as Immutable

Category Severity Location Status

Gas Optimization Informational projects/shibaswapv1/contracts/BuryShib.sol: 15 Resolved

Description

The variable shib assigned in the constructor can declare as immutable . Immutable state variables can

be assigned during contract creation but will remain constant throughout the lifetime of a deployed

contract. A big advantage of immutable variables is that reading them is significantly cheaper than reading

from regular state variables since immutable will not be stored in storage. Still, values will directly insert

the values into the runtime code.

Recommendation

We recommend using an immutable state variable for shib .

1515 IERC20 IERC20 publicpublic immutable shib immutable shib;;

Alleviation

[Shiba]: The team heeded our advice and resolved this issue in the commit

b4e8234087b1bc52f14c0e5e94115ca3fc8e47bb .

ShibaSwap Security Assessment

BTC-01 | Delegation Should Move Along Fund Transfer

Category Severity Location Status

Logical Issue Major projects/shibaswapv1/contracts/BoneToken.sol: 15 Resolved

Description

Given BoneToken is a governance token, any functions that involve the fund operation, such as

transfer/mint/burn, should also require come along with the delegate operation. Otherwise, it could lead to

an inconsistency in the result of the delegate of each addresses.

For example:

transfer()

transferFrom()

burn()

Recommendation

We advise that transfer() , transferFrom() and burn() functions are properly overridden to also

transfer delegates on each invocation from the sender of the funds to the recipient.

Alleviation

[Shiba]: The team heeded our advice and resolved this issue in the commit

58e2df72d15ed8e38074f98053d2281339d11169 .

ShibaSwap Security Assessment

BTC-02 | Lack of Check for Integer Overflow

Category Severity Location Status

Mathematical Operations Informational projects/shibaswapv1/contracts/BoneToken.sol: 232 Resolved

Description

The operation in the aforementioned line does not check integer overflow:

232232 numCheckpoints numCheckpoints[[delegateedelegatee]] == nCheckpoints nCheckpoints ++ 11;;

It might lead to an inaccurate result.

Recommendation

We advise the client to check integer overflows in integer operations.

Alleviation

[Shiba]: The team heeded our advice and resolved this issue in the commit

58e2df72d15ed8e38074f98053d2281339d11169 .

ShibaSwap Security Assessment

DBD-01 | Centralization Risk

Category Severity Location Status

Centralization /
Privilege

Minor
projects/shibaswapv1/contracts/DevBoneDistributor.sol: 41, 45,
49, 53

Resolved

Description

The owner of the contract with the owner role has the privilege to update the following sensitive variables:

devWallet

marketingWallet

adminWallet

devSharePercent

marketingSharePercent

adminSharePercent

All of these variables decide the source and the percentage of BONE that will be distributed to devWallet

and marketingAndGrowthWallet . Any compromise to the owner account may allow the hacker to take

advantage of it and potentially transfer all BONE tokens to any arbitrary address.

Recommendation

We recommend the team carefully manage the owner account's private key to avoid any potential risks of

being hacked. In general, we strongly recommend centralized privileges or roles in the protocol to be

improved via a decentralized mechanism or smart-contract-based accounts with enhanced security

practices, e.g., Multisignature wallets.

Indicatively, here are some feasible solutions that would also mitigate the potential risk:

Time-lock with reasonable latency, i.e., 48 hours, for awareness on privileged operations;

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key;

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

Alleviation

[Shiba]: The team acknowledges the issue and applied the MultiSig solution in any sensitive privilege

access(i.e., owner role).

ShibaSwap Security Assessment

The Emergency Multisig members have trusted members of the Community and the Defi environment.

There must be 6 out of 9 signatures from the below addresses for a transaction to be approved.

MULTISIG EMERGENCY ADDRESS: 0x4267A3aD7d20c2396ebb0Fe72119984F7073761C

@OMEGA_HYPERION: 0x399EC033EE08241512212a4C388a76C9d3aB1c00

@KAAL_DHAIRYA: 0xBab4F3e701F6d2e009Af3C7f1eF2e7dD68225E96

@HYROSHI_KIPA: 0x80e32DEfc16ce8f78d09E6ef7065AfE031bAcab7

@JUNE_HORLA: 0x6948cBbEa74549062050a164d8fc4cFF27E82084

@SISLEY_ARGONAUT: 0xe166c948b8aED157575B6792019cdeE8a5177dcE

@COUNTER_NOMAD: 0x8E1B6Af660C14f5CC28727f23fCcBC977bd89B6B

@SHINATO_SAMA: 0x6b162Bc637bAAe0DAC38c200D9727fc679a0cCE4

@MISS_PHOENIX_SHIB: 0x30f45F7b08164D2Dd38D9Cdd8509b1E580432d04

@BURF_DURF: 0x5D471E3a033EaF7eE0cA303405978Da4c2cdAD33

You can find more details about the MultiSig Model include the settings and member's information in the

the Shiba Inu Ecosystem Woof Paper Page 24.

ShibaSwap Security Assessment

https://etherscan.io/address/0x4267A3aD7d20c2396ebb0Fe72119984F7073761C
https://etherscan.io/address/0x399EC033EE08241512212a4C388a76C9d3aB1c00
https://etherscan.io/address/0xBab4F3e701F6d2e009Af3C7f1eF2e7dD68225E96
https://etherscan.io/address/0x80e32DEfc16ce8f78d09E6ef7065AfE031bAcab7
https://etherscan.io/address/0x6948cBbEa74549062050a164d8fc4cFF27E82084
https://etherscan.io/address/0xe166c948b8aED157575B6792019cdeE8a5177dcE
https://etherscan.io/address/0x8E1B6Af660C14f5CC28727f23fCcBC977bd89B6B
https://etherscan.io/address/0x6b162Bc637bAAe0DAC38c200D9727fc679a0cCE4
https://etherscan.io/address/0x30f45F7b08164D2Dd38D9Cdd8509b1E580432d04
https://etherscan.io/address/0x5D471E3a033EaF7eE0cA303405978Da4c2cdAD33
https://github.com/shytoshikusama/woofwoofpaper/raw/main/SHIBA_INU_WOOF_WOOF.pdf

DBD-02 | Lack of Event Emission for Significant Transactions

Category Severity Location Status

Coding Style Informational projects/shibaswapv1/contracts/DevBoneDistributor.sol: 41, 45, 49, 53 Resolved

Description

Functions that affect the status of sensitive variables should be able to emit events as notifications to

customers:

setDevWallet()

setMarketingWallet()

setAdminWallet()

setWalletDistribution()

Recommendation

We advise the client to consider adding events for sensitive actions and emit them in the corresponding

functions.

Alleviation

[Shiba]: The team heeded our advice and resolved this issue in the commit

b4e8234087b1bc52f14c0e5e94115ca3fc8e47bb .

The team removed adminWallet and merged it into devWallet in the commit

22d2f0372a50a7d9e524b447ed9a91fc4e4212e6 . Events are modified and emitted in the updated functions.

ShibaSwap Security Assessment

MDD-01 | Centralization Risk

Category Severity Location Status

Centralization /
Privilege

Major
projects/shibaswapv1/contracts/merkleDistributors/boneMerkleDistri
butor.sol: 261, 267, 284

Resolved

Description

The owner of the contract with the owner role has the privilege to update the merkleRoot by calling

function updateMerkleRoot() . Any compromise to the account with owner role may allow the hacker to

take advantage of it. For example, if a hacker passes the argument merkleProof when calling function

claim() , they bypass the check require(MerkleProof.verify(merkleProof, merkleRoot, node),

'MerkleDistributor: Invalid proof.') in L267. Because of this manipulation of merkleRoot , they

could transfer any amount of token to an arbitrary address account .

The same concern exists in all of these contracts as the contract boneMerkleDistributor has almost

exactly the same content as:

daiMerkleDistributor

usdcMerkleDistributor

usdtMerkleDistributor

wbtcMerkleDistributor

wethMerkleDistributor

xLeashBoneMerkleDistributor

xShibBoneMerkleDistributor

Recommendation

We advise the client to carefully manage the owner account's private key to avoid any potential risks of

being hacked.

In general, we strongly recommend centralized privileges or roles in the protocol to be improved via a

decentralized mechanism or via smart-contract-based accounts with enhanced security practices, f.e.

Multisignature wallets.

Indicatively, here are some feasible solutions that would also mitigate the potential risk:

Time-lock with reasonable latency, i.e. 48 hours, for awareness on privileged operations;

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key;

ShibaSwap Security Assessment

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

Alleviation

[Shiba]: The team acknowledges the issue and applied the MultiSig solution in any sensitive privilege

access(i.e., owner role).

The Emergency Multisig members have trusted members of the Community and the Defi environment.

There must be 6 out of 9 signatures from the below addresses for a transaction to be approved.

MULTISIG EMERGENCY ADDRESS: 0x4267A3aD7d20c2396ebb0Fe72119984F7073761C

@OMEGA_HYPERION: 0x399EC033EE08241512212a4C388a76C9d3aB1c00

@KAAL_DHAIRYA: 0xBab4F3e701F6d2e009Af3C7f1eF2e7dD68225E96

@HYROSHI_KIPA: 0x80e32DEfc16ce8f78d09E6ef7065AfE031bAcab7

@JUNE_HORLA: 0x6948cBbEa74549062050a164d8fc4cFF27E82084

@SISLEY_ARGONAUT: 0xe166c948b8aED157575B6792019cdeE8a5177dcE

@COUNTER_NOMAD: 0x8E1B6Af660C14f5CC28727f23fCcBC977bd89B6B

@SHINATO_SAMA: 0x6b162Bc637bAAe0DAC38c200D9727fc679a0cCE4

@MISS_PHOENIX_SHIB: 0x30f45F7b08164D2Dd38D9Cdd8509b1E580432d04

@BURF_DURF: 0x5D471E3a033EaF7eE0cA303405978Da4c2cdAD33

You can find more details about the MultiSig Model include the settings and member's information in the

the Shiba Inu Ecosystem Woof Paper Page 24.

ShibaSwap Security Assessment

https://etherscan.io/address/0x4267A3aD7d20c2396ebb0Fe72119984F7073761C
https://etherscan.io/address/0x399EC033EE08241512212a4C388a76C9d3aB1c00
https://etherscan.io/address/0xBab4F3e701F6d2e009Af3C7f1eF2e7dD68225E96
https://etherscan.io/address/0x80e32DEfc16ce8f78d09E6ef7065AfE031bAcab7
https://etherscan.io/address/0x6948cBbEa74549062050a164d8fc4cFF27E82084
https://etherscan.io/address/0xe166c948b8aED157575B6792019cdeE8a5177dcE
https://etherscan.io/address/0x8E1B6Af660C14f5CC28727f23fCcBC977bd89B6B
https://etherscan.io/address/0x6b162Bc637bAAe0DAC38c200D9727fc679a0cCE4
https://etherscan.io/address/0x30f45F7b08164D2Dd38D9Cdd8509b1E580432d04
https://etherscan.io/address/0x5D471E3a033EaF7eE0cA303405978Da4c2cdAD33
https://github.com/shytoshikusama/woofwoofpaper/raw/main/SHIBA_INU_WOOF_WOOF.pdf

MTL-01 | Centralization Risk

Category Severity Location Status

Centralization / Privilege Major projects/shibaswapv1/contracts/MultiTokenLocker.sol: 41, 56 Resolved

Description

In the contract MultiTokenLocker , the role owner has authority over the following function:

withdrawTheseToken() : transfer a list of unlocked tokens to a list of accounts.

withdrawThisToken() : transfer an unlocked token to an account.

These two functions have the possibility of being maliciously manipulated by hackers if the account of the

owner was compromised.

Recommendation

We advise the client to carefully manage the owner account's private key to avoid any potential risks of

being hacked. In general, we strongly encourage the centralized privileges or roles in the protocol to be

improved via a decentralized mechanism or via smart-contract-based accounts with enhanced security

practices, e.g. Multisignature wallets.

Indicatively, here are some feasible solutions that would also mitigate the potential risk:

Time-lock with reasonable latency, i.e. 48 hours, for awareness on privileged operations;

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key;

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

Alleviation

[Shiba]: The team acknowledges the issue and applied the MultiSig solution in any sensitive privilege

access(i.e., owner role).

The Emergency Multisig members have trusted members of the Community and the Defi environment.

There must be 6 out of 9 signatures from the below addresses for a transaction to be approved.

MULTISIG EMERGENCY ADDRESS: 0x4267A3aD7d20c2396ebb0Fe72119984F7073761C

@OMEGA_HYPERION: 0x399EC033EE08241512212a4C388a76C9d3aB1c00

@KAAL_DHAIRYA: 0xBab4F3e701F6d2e009Af3C7f1eF2e7dD68225E96

@HYROSHI_KIPA: 0x80e32DEfc16ce8f78d09E6ef7065AfE031bAcab7

ShibaSwap Security Assessment

https://etherscan.io/address/0x4267A3aD7d20c2396ebb0Fe72119984F7073761C
https://etherscan.io/address/0x399EC033EE08241512212a4C388a76C9d3aB1c00
https://etherscan.io/address/0xBab4F3e701F6d2e009Af3C7f1eF2e7dD68225E96
https://etherscan.io/address/0x80e32DEfc16ce8f78d09E6ef7065AfE031bAcab7

@JUNE_HORLA: 0x6948cBbEa74549062050a164d8fc4cFF27E82084

@SISLEY_ARGONAUT: 0xe166c948b8aED157575B6792019cdeE8a5177dcE

@COUNTER_NOMAD: 0x8E1B6Af660C14f5CC28727f23fCcBC977bd89B6B

@SHINATO_SAMA: 0x6b162Bc637bAAe0DAC38c200D9727fc679a0cCE4

@MISS_PHOENIX_SHIB: 0x30f45F7b08164D2Dd38D9Cdd8509b1E580432d04

@BURF_DURF: 0x5D471E3a033EaF7eE0cA303405978Da4c2cdAD33

You can find more details about the MultiSig Model include the settings and members' information in the

the Shiba Inu Ecosystem Woof Paper Page 24.

ShibaSwap Security Assessment

https://etherscan.io/address/0x6948cBbEa74549062050a164d8fc4cFF27E82084
https://etherscan.io/address/0xe166c948b8aED157575B6792019cdeE8a5177dcE
https://etherscan.io/address/0x8E1B6Af660C14f5CC28727f23fCcBC977bd89B6B
https://etherscan.io/address/0x6b162Bc637bAAe0DAC38c200D9727fc679a0cCE4
https://etherscan.io/address/0x30f45F7b08164D2Dd38D9Cdd8509b1E580432d04
https://etherscan.io/address/0x5D471E3a033EaF7eE0cA303405978Da4c2cdAD33
https://github.com/shytoshikusama/woofwoofpaper/raw/main/SHIBA_INU_WOOF_WOOF.pdf

MTL-02 | Lack of Check for Integer Overflow

Category Severity Location Status

Mathematical Operations Minor projects/shibaswapv1/contracts/MultiTokenLocker.sol: 59 Resolved

Description

The operation in the aforementioned line does not check integer overflow:

232232 requirerequire((blockblock..timestamp timestamp >=>= lockInfoArray lockInfoArray[[_lockId_lockId]].._timestamp _timestamp ++
lockInfoArraylockInfoArray[[_lockId_lockId]].._lockingPeriod_lockingPeriod,, "Cannot claim now, still in locking period""Cannot claim now, still in locking period"));;

It might lead to an inaccurate result.

Recommendation

We advise the client to consider using SafeMath library of Openzeppelin library:

 requirerequire((blockblock..timestamp timestamp >=>=
lockInfoArraylockInfoArray[[_lockId_lockId]].._timestamp_timestamp..addadd((lockInfoArraylockInfoArray[[_lockId_lockId]].._lockingPeriod_lockingPeriod)),, "Cannot"Cannot
claim now, still in locking period"claim now, still in locking period"));;

Alleviation

[Shiba]: The team heeded our advice and resolved this issue in the commit

6c6fed3662f811cfe95d3b49be730ce53c65fe95 .

ShibaSwap Security Assessment

MTL-03 | Unrestricted Privilege Function

Category Severity Location Status

Logical Issue Medium projects/shibaswapv1/contracts/MultiTokenLocker.sol: 31 Resolved

Description

The function MultiTokenLocker.receiveApproval() transfers tokens from _distributorContract to the

contract account. It is not restricted, so everyone can call this function. Its safety is guaranteed by the fact

that _distributorContract needs to approve some allowance for this contract before this function is

triggered, or _distributorContract does not hold any token until it triggers this function. However, the

logic in _distributorContract before calling the function MultiTokenLocker.receiveApproval() is

unknown to us, which means the safety of this function is not guaranteed.

Recommendation

We advise the client add restrictions on calling the function MultiTokenLocker.receiveApproval() ,

onlyOwner as an example, or review the design of _distributorContract to ensure

MultiTokenLocker.receiveApproval() will not be triggered only when it is necessary.

Alleviation

[Shiba]: The team heeded our advice and resolved this issue in the commit

6c6fed3662f811cfe95d3b49be730ce53c65fe95 .

ShibaSwap Security Assessment

TCK-01 | Incorrect Reference URL In Comment

Category Severity Location Status

Coding Style Informational projects/shibaswapv1/contracts/Timelock.sol: 3 Resolved

Description

In the aforementioned line, the comment of reference URL to timelock contract is incorrect.

Recommendation

We recommend addressing the comment to correct reference URL to
https://raw.githubusercontent.com/compound-finance/compound-

protocol/master/contracts/Timelock.sol

Alleviation

[Shiba]: The team heeded our advice and resolved this issue in the commit

b4e8234087b1bc52f14c0e5e94115ca3fc8e47bb .

ShibaSwap Security Assessment

TDC-01 | add() Function Not Restricted

Category Severity Location Status

Volatile Code Major projects/shibaswapv1/contracts/TopDog.sol: 139 Resolved

Description

When the same LP token is added into a pool more than once in function add() , the total amount of

reward in function updatePool() will be incorrectly calculated. The current implementation is relying on the

operation correctness to avoid repeatedly adding the same LP token to the pool, as the function will only

be called by the owner.

Recommendation

We recommend adding the check for ensuring whether the given pool for addition is a duplicate of an

existing pool so that the pool addition is only successful when there is no duplicate. This can be done by

using a mapping of addresses -> booleans , which can restrict the same address from being added twice.

In addition, consider not using contract MasterChef and to use contract MasterChefV2 instead, since

MasterChefV2 has already solved this issue by adding nonDuplicated modifier.

Alleviation

[Shiba]: The team heeded our advice and resolved this issue in the commit

b4e8234087b1bc52f14c0e5e94115ca3fc8e47bb .

ShibaSwap Security Assessment

TDC-02 | Centralization Risk

Category Severity Location Status

Centralization /
Privilege

Minor
projects/shibaswapv1/contracts/TopDog.sol: 169, 316, 322, 327, 337, 34
2, 347, 352, 357, 362, 154, 332, 368, 373, 378

Resolved

Description

The owner of the contract with the owner role has the privilege to execute the following functions to

update the sensitive settings of the project. Any compromise to the owner account may allow the hacker

to manipulate the project through these functions.

updateRewardPerBlock()

setMigrator()

setRewardMintPercent()

setDevRewardMintPercent()

setLockingPeriod()

devUpdate()

tBoneBoneDistributorUpdate()

xShibBoneDistributorUpdate()

xLeashBoneDistributorUpdate()

devPercentUpdate()

tBonePercentUpdate()

xShibPercentUpdate()

xLeashPercentUpdate()

Recommendation

We advise the client to carefully manage the owner account's private key to avoid any potential risks of

being hacked. In general, we strongly recommend centralized privileges or roles in the protocol to be

improved via a decentralized mechanism or via smart-contract-based accounts with enhanced security

practices, e.g. Multisignature wallets.

Indicatively, here are some feasible solutions that would also mitigate the potential risk:

Time-lock with reasonable latency, i.e. 48 hours, for awareness on privileged operations;

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key;

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

ShibaSwap Security Assessment

Alleviation

[Shiba]: The team acknowledges the issue and applied the MultiSig solution in any sensitive privilege

access(i.e., owner role).

The Emergency Multisig members have trusted members of the Community and the Defi environment.

There must be 6 out of 9 signatures from the below addresses for a transaction to be approved.

MULTISIG EMERGENCY ADDRESS: 0x4267A3aD7d20c2396ebb0Fe72119984F7073761C

@OMEGA_HYPERION: 0x399EC033EE08241512212a4C388a76C9d3aB1c00

@KAAL_DHAIRYA: 0xBab4F3e701F6d2e009Af3C7f1eF2e7dD68225E96

@HYROSHI_KIPA: 0x80e32DEfc16ce8f78d09E6ef7065AfE031bAcab7

@JUNE_HORLA: 0x6948cBbEa74549062050a164d8fc4cFF27E82084

@SISLEY_ARGONAUT: 0xe166c948b8aED157575B6792019cdeE8a5177dcE

@COUNTER_NOMAD: 0x8E1B6Af660C14f5CC28727f23fCcBC977bd89B6B

@SHINATO_SAMA: 0x6b162Bc637bAAe0DAC38c200D9727fc679a0cCE4

@MISS_PHOENIX_SHIB: 0x30f45F7b08164D2Dd38D9Cdd8509b1E580432d04

@BURF_DURF: 0x5D471E3a033EaF7eE0cA303405978Da4c2cdAD33

You can find more details about the MultiSig Model include the settings and members' information in the

the Shiba Inu Ecosystem Woof Paper Page 24.

ShibaSwap Security Assessment

https://etherscan.io/address/0x4267A3aD7d20c2396ebb0Fe72119984F7073761C
https://etherscan.io/address/0x399EC033EE08241512212a4C388a76C9d3aB1c00
https://etherscan.io/address/0xBab4F3e701F6d2e009Af3C7f1eF2e7dD68225E96
https://etherscan.io/address/0x80e32DEfc16ce8f78d09E6ef7065AfE031bAcab7
https://etherscan.io/address/0x6948cBbEa74549062050a164d8fc4cFF27E82084
https://etherscan.io/address/0xe166c948b8aED157575B6792019cdeE8a5177dcE
https://etherscan.io/address/0x8E1B6Af660C14f5CC28727f23fCcBC977bd89B6B
https://etherscan.io/address/0x6b162Bc637bAAe0DAC38c200D9727fc679a0cCE4
https://etherscan.io/address/0x30f45F7b08164D2Dd38D9Cdd8509b1E580432d04
https://etherscan.io/address/0x5D471E3a033EaF7eE0cA303405978Da4c2cdAD33
https://github.com/shytoshikusama/woofwoofpaper/raw/main/SHIBA_INU_WOOF_WOOF.pdf

TDC-03 | Over Minted Token

Category Severity Location Status

Logical Issue Minor projects/shibaswapv1/contracts/TopDog.sol: 235~243 Resolved

Description

updatePool() function minted 100%(boneReward) + 10%(devBoneReward)+ 1%(tBONE)+ 3%(xSHIB)+

1%(xLEASH) of total rewards.

Recommendation

We advise the client to fix to mint 100% of the block reward instead of 100% + 10% + 1% + 3% + 1% =

115% of the the block reward .

Alleviation

[Shiba]: In the latest whitepaper, rewards for tBONE, xSHIBA and xLEASH are "additionally" minted, which

means the percentages are calculated based on the amount of boneReward rather than that of all rewards,

so the aforementioned percentages are correct.

ShibaSwap Security Assessment

TDC-04 | Incompatibility With Deflationary Tokens

Category Severity Location Status

Logical Issue Minor projects/shibaswapv1/contracts/TopDog.sol: 250, 273 Resolved

Description

When transferring standard ERC20 deflationary tokens, the input amount may not be equal to the received

amount due to the charged transaction fee. As a result, an inconsistency in the amount will occur and the

transaction may fail due to the validation checks.

Recommendation

We advise the client to regulate the set of LP tokens supported and add necessary mitigation mechanisms

to keep track of accurate balances if there is a need to support deflationary tokens.

Alleviation

[Shiba]: The team reviewed the issue and disagreed with the description. The team confirmed that the

TopDog contract would not support any external deflationary tokens.

[CertiK]: We agreed that the issue wouldn't occur if the token contract does not support any deflationary

tokens.

ShibaSwap Security Assessment

TDC-05 | Lack of Event Emission for Significant Transactions

Category Severity Location Status

Coding
Style

Informational
projects/shibaswapv1/contracts/TopDog.sol: 154, 169, 316, 322, 327, 332
, 337, 342, 347, 352, 357, 362, 368, 373, 378

Resolved

Description

The function that affects the status of sensitive variables should be able to emit events as notifications to

customers.

updateRewardPerBlock()

setMigrator()

setRewardMintPercent()

setDevRewardMintPercent()

setLockingPeriod()

devUpdate()

tBoneBoneDistributorUpdate()

xShibBoneDistributorUpdate()

xLeashBoneDistributorUpdate()

devPercentUpdate()

tBonePercentUpdate()

xShibPercentUpdate()

xLeashPercentUpdate()

Recommendation

We advise the client to consider adding events for the above-mentioned sensitive actions and emit them in

the function.

11 eventevent SetDevSetDev((addressaddress indexedindexed user user,, addressaddress indexedindexed _devaddr _devaddr));;

22
33 functionfunction devUpdatedevUpdate((addressaddress _devaddr _devaddr)) publicpublic onlyOwner onlyOwner {{

44 devaddr devaddr == _devaddr _devaddr;;

55 		 emitemit SetDevSetDev((msgmsg..sendersender,, _devaddr _devaddr));;

66 }}

Alleviation

ShibaSwap Security Assessment

[Shiba]: The team heeded our advice and resolved this issue in the commit

b4e8234087b1bc52f14c0e5e94115ca3fc8e47bb .

ShibaSwap Security Assessment

TDC-06 | Misleading Result of Multiplier Calculation

Category Severity Location Status

Logical Issue Minor projects/shibaswapv1/contracts/TopDog.sol: 186 Resolved

Description

In the function TopDog.getMultiplier() , the multiplier should be calculated by the following formula:

 ((number of blocks with bonusnumber of blocks with bonus)) ** BONUS_MULTIPLIER BONUS_MULTIPLIER ++ ((number of blocks without bonusnumber of blocks without bonus))

However, startBlock , which is set in L121, is not considered in the calculation.

When the function is triggered by TopDog.pendingBone() (L205) and TopDog.updatePool() (L231), the

input variables _from and _to are always greater than startBlock , so it is unnecessary to consider

startBlock .

Given the TopDog.getMultiplier() is a public function, which means it can be called externally, all

possibilities of the input need to be fully considered.

For example, if _from < startBlock and _to < startBlock , the multiplier should be

_from.sub(startBlock).mul(BONUS_MULTIPLIER) , rather than _to.sub(_from).mul(BONUS_MULTIPLIER)

which is calculated in the function.

Recommendation

We advise the client to use startBlock in the calculation for the multiplier if _from < startBlock :

186186 functionfunction getMultipliergetMultiplier((uint256uint256 _from _from,, uint256uint256 _to _to)) publicpublic viewview returnsreturns ((uint256uint256))
{{

187187 ifif ((_from _from << startBlock startBlock)) {{

188188 _from _from == startBlock startBlock;;

189189 }}

190190 ifif ((_to _to <=<= bonusEndBlock bonusEndBlock)) {{

191191 returnreturn _to _to..subsub((_from_from))..mulmul((BONUS_MULTIPLIERBONUS_MULTIPLIER));;

192192 }} elseelse ifif ((_from _from >=>= bonusEndBlock bonusEndBlock)) {{

193193 returnreturn _to _to..subsub((_from_from));;

194194 }} elseelse {{

195195 returnreturn bonusEndBlock bonusEndBlock..subsub((_from_from))..mulmul((BONUS_MULTIPLIERBONUS_MULTIPLIER))..addadd((

196196 _to _to..subsub((bonusEndBlockbonusEndBlock))

197197));;

ShibaSwap Security Assessment

198198 }}

199199 }}

Alleviation

[Shiba]: The team heeded our advice and resolved this issue in the commit

b4e8234087b1bc52f14c0e5e94115ca3fc8e47bb .

ShibaSwap Security Assessment

TDC-07 | Inconsistent Checks-effects-interactions Pattern

Category Severity Location Status

Logical Issue Major projects/shibaswapv1/contracts/TopDog.sol: 250, 273 Resolved

Description

A reentrancy attack can occur when the contract creates a function that makes an external call to another

untrusted contract before resolving any effects. If the attacker can control the untrusted contract, they can

make a recursive call back to the original function, repeating interactions that would have otherwise not run

after the external call resolved the effects.

The function deposit() and withdraw() in the TopDog contract has state user.rewardDebt updated

after the external call pool.lpToken.safeTransferFrom() and thus are vulnerable to reentrancy attacks.

For example, a user calls TopDog.deposit() and claims his reward calculated in L255. If

pool.lpToken.safeTransferFrom() (L265) allows external calls defined by users, the user can re-enter

TopDog.deposit() before user.rewardDebt is updated (L268). Then the user is able to claim reward again

(L255) because user.rewardDebt is not updated.

Recommendation

We recommend using the Checks-Effects-Interactions Pattern to avoid the risk of calling unknown

contracts or applying OpenZeppelin ReentrancyGuard library - nonReentrant modifier for the

aforementioned functions to prevent reentrancy attack.

Alleviation

[Shiba]: The team heeded our advice and resolved this issue in the commit

b4e8234087b1bc52f14c0e5e94115ca3fc8e47bb .

ShibaSwap Security Assessment

https://docs.soliditylang.org/en/v0.6.12/security-considerations.html#use-the-checks-effects-interactions-pattern
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/ReentrancyGuard.sol

TDC-08 | Potential Loss of Pool Rewards

Category Severity Location Status

Logical Issue Minor projects/shibaswapv1/contracts/TopDog.sol: 139, 160 Resolved

Description

functionfunction addadd((uint256uint256 _allocPoint _allocPoint,, IERC20 _lpToken IERC20 _lpToken,, boolbool _withUpdate _withUpdate)) publicpublic onlyOwner onlyOwner {{

 ifif ((_withUpdate_withUpdate)) {{

 massUpdatePoolsmassUpdatePools(());;

 }}

}}

In the function TopDog.add() and TopDog.set() , the flag '_withUpdate' determines if all the pools will be

updated. This reliance might lead to significant loss of the reward.

For instance, assume we had only one pool with pool.allocPoint == 50 and totalAllocPoint == 50 at

the beginning. Now we want to add another pool with pool.allocPoint == 50 .
There will be two

scenarios on calculating the pool reward,

Case 1: _withUpdate is true value.

Step 1, distribute the reward and update the pool.

Step 2, add or set the given pool information.

(Notes: This is important because the functions update totalAllocPoint , which is used in calculation of

pool rewards in the function TopDog.updatePool() (L232))

Case 2: _withUpdate is false value.

Step 1, add or set the given pool information.

(Note: the pools update will happens later)

If we call TopDog.add() with _withUpdate == true , reward for the first pool is updated and

boneReward in L232 is multiplier.mul(bonePerBlock) .

If we call TopDog.add() with _withUpdate == false , reward for the first pool is not updated before

the second pool is added. Then we call TopDog.updatePool() to update the reward for the first

pool. boneReward in L232 becomes multiplier.mul(bonePerBlock).mul(50).div(100) because

ShibaSwap Security Assessment

the second pool is sharing rewards with the first one. The amount of reward becomes half as much

as that in the first case.

Recommendation

We advise the client to remove the _withUpdate flag and always update pool rewards before updating

pool information.

Alleviation

[Shiba]: The team reviewed the issue and disagreed on it. The team confirmed that the flag _withUpdate

design intended to work well with the Shiba team business flow.
The _withUpdate flag will operate

appropriately:

The add() function is only onlyOwner access; the operation will conduct only by authorized people.

The flag _withUpdate can save gas when adding multiple pools successively, such as during the

launch. The team believes it's beneficial to have the option of not updating the pools each time. For

instance, when adding, say, 10 pools successively, with the first 9 of them as false, and the last one

as true, will enable them to start accruing rewards simultaneously, which won't be possible if we

force update pools each time.

ShibaSwap Security Assessment

TFC-01 | Centralization Risk

Category Severity Location Status

Centralization / Privilege Minor projects/shibaswapv1/contracts/TreasureFinder.sol: 327 Resolved

Description

The owner of the contract with the owner role has the privilege to update the address of

topCoinDestination , which will affect the destination where the assets would be sent to. Any

compromise to the account owner may allow the hacker to take advantage of it and transfer all withdrawn

tokens to an arbitrary address/pair address.

Recommendation

We advise the client to carefully manage the owner account's private key to avoid any potential risks of

being hacked. In general, we strongly recommend centralized privileges or roles in the protocol to be

improved via a decentralized mechanism or via smart-contract-based accounts with enhanced security

practices, e.g. Multisignature wallets.

Indicatively, here are some feasible solutions that would also mitigate the potential risk:

Time-lock with reasonable latency, i.e. 48 hours, for awareness on privileged operations;

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key;

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

Alleviation

[Shiba]: The team acknowledges the issue and applied the MultiSig solution in any sensitive privilege

access(i.e., owner role).

The Emergency Multisig members have trusted members of the Community and the Defi environment.

There must be 6 out of 9 signatures from the below addresses for a transaction to be approved.

MULTISIG EMERGENCY ADDRESS: 0x4267A3aD7d20c2396ebb0Fe72119984F7073761C

@OMEGA_HYPERION: 0x399EC033EE08241512212a4C388a76C9d3aB1c00

@KAAL_DHAIRYA: 0xBab4F3e701F6d2e009Af3C7f1eF2e7dD68225E96

@HYROSHI_KIPA: 0x80e32DEfc16ce8f78d09E6ef7065AfE031bAcab7

@JUNE_HORLA: 0x6948cBbEa74549062050a164d8fc4cFF27E82084

@SISLEY_ARGONAUT: 0xe166c948b8aED157575B6792019cdeE8a5177dcE

ShibaSwap Security Assessment

https://etherscan.io/address/0x4267A3aD7d20c2396ebb0Fe72119984F7073761C
https://etherscan.io/address/0x399EC033EE08241512212a4C388a76C9d3aB1c00
https://etherscan.io/address/0xBab4F3e701F6d2e009Af3C7f1eF2e7dD68225E96
https://etherscan.io/address/0x80e32DEfc16ce8f78d09E6ef7065AfE031bAcab7
https://etherscan.io/address/0x6948cBbEa74549062050a164d8fc4cFF27E82084
https://etherscan.io/address/0xe166c948b8aED157575B6792019cdeE8a5177dcE

@COUNTER_NOMAD: 0x8E1B6Af660C14f5CC28727f23fCcBC977bd89B6B

@SHINATO_SAMA: 0x6b162Bc637bAAe0DAC38c200D9727fc679a0cCE4

@MISS_PHOENIX_SHIB: 0x30f45F7b08164D2Dd38D9Cdd8509b1E580432d04

@BURF_DURF: 0x5D471E3a033EaF7eE0cA303405978Da4c2cdAD33

You can find more details about the MultiSig Model include the settings and members' information in the

the Shiba Inu Ecosystem Woof Paper Page 24.

ShibaSwap Security Assessment

https://etherscan.io/address/0x8E1B6Af660C14f5CC28727f23fCcBC977bd89B6B
https://etherscan.io/address/0x6b162Bc637bAAe0DAC38c200D9727fc679a0cCE4
https://etherscan.io/address/0x30f45F7b08164D2Dd38D9Cdd8509b1E580432d04
https://etherscan.io/address/0x5D471E3a033EaF7eE0cA303405978Da4c2cdAD33
https://github.com/shytoshikusama/woofwoofpaper/raw/main/SHIBA_INU_WOOF_WOOF.pdf

TFC-02 | Lack of Event Emission for Significant Transactions

Category Severity Location Status

Coding Style Informational projects/shibaswapv1/contracts/TreasureFinder.sol: 327 Resolved

Description

The function that affects the status of sensitive variables should be able to emit events as notifications to

customers

Recommendation

Consider adding events for sensitive actions, and emit them in the function like below:

11 eventevent SetTopCinDestinationSetTopCinDestination((addressaddress indexedindexed user user,, addressaddress indexedindexed _adminAddress _adminAddress));;

22
33 functionfunction setTopCoinDestinationsetTopCoinDestination((addressaddress _destination _destination)) externalexternal onlyOwner onlyOwner {{

44 topCoinDestination topCoinDestination == _destination _destination;;

55 		 emitemit SetTopCinDestinationSetTopCinDestination((msgmsg..sendersender,, _destination _destination))

66 }}		

Alleviation

[Shiba]: The team heeded our advice and resolved this issue in the commit

b4e8234087b1bc52f14c0e5e94115ca3fc8e47bb .

ShibaSwap Security Assessment

TFC-03 | Potential Sandwich Attack

Category Severity Location Status

Logical Issue Minor projects/shibaswapv1/contracts/TreasureFinder.sol: 310, 315 Partially Resolved

Description

When pair.swap() is triggered for a trade of asset fromToken for toToken , an attacker observing this

transaction can manipulate the exchange rate by frontrunning a transaction to purchase one of the assets

and make profits by backrunning a transaction to sell the asset.

Here is a possible exploit scenario: A user plans to make a transaction of swapping 100 fromToken for 1

toToken .
The attacker can monitor the mempool and know the transaction detail (i.e, gas) for taking the

benefit of frontrunning the victim's transaction.
An attacker could raise the price of toToken by swapping

fromToken for toToken before the transaction. As a result, the user might get less toToken than he

expected. After the transaction, the attacker would be able to swap toToken for more fromToken than he

used in his previous transaction.

Recommendation

We recommend setting a proper maximum slippage when swapping one pair of the assets.

Alleviation

[Shiba]: The team acknowledged this issue and decided to take the following alleviations:

Set the bridge for low liquidity tokens to be their most liquid pair.

Swap only highly liquid pairs, where price manipulation (without a flashloan) is not feasible.

ShibaSwap Security Assessment

UVF-01 | Centralization Risk

Category Severity Location Status

Centralization /
Privilege

Major
projects/shibaswapv1/contracts/uniswapv2/UniswapV2Factory.sol: 8
6, 91, 96, 101, 109, 117

Resolved

Description

The owner of the contract with the owner role has the privilege to control the following sensitive variables

and functions beyond the scope of the original version of UniswapV2Factory.sol.

migrator in function setMigrator()

feeToSetter in function setFeeToSetter() .

topCoins in function setTopCoin() .

totalFeeTopCoin ,alphaTopCoin , and betaTopCoin in function setTopCoinFee() .

totalFeeRegular ,alphaRegular , and betaRegular in function setRegularCoinFee() .

Function updatePairFee() .

Any compromise to the account owner may allow the hacker to take advantage of these functions and

variables, and eventually manipulate the entire project's economical system.

Recommendation

We advise the client to carefully manage the owner account's private key to avoid any potential risks of

being hacked. In general, we strongly recommend centralized privileges or roles in the protocol to be

improved via a decentralized mechanism or via smart-contract-based accounts with enhanced security

practices, e.g. Multisignature wallets.

Indicatively, here are some feasible solutions that would also mitigate the potential risk:

Time-lock with reasonable latency, i.e. 48 hours, for awareness on privileged operations;

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key;

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

Alleviation

[Shiba]: The team acknowledges the issue and applied the MultiSig solution in any sensitive privilege

access(i.e., owner role).

ShibaSwap Security Assessment

The Emergency Multisig members have trusted members of the Community and the Defi environment.

There must be 6 out of 9 signatures from the below addresses for a transaction to be approved.

MULTISIG EMERGENCY ADDRESS: 0x4267A3aD7d20c2396ebb0Fe72119984F7073761C

@OMEGA_HYPERION: 0x399EC033EE08241512212a4C388a76C9d3aB1c00

@KAAL_DHAIRYA: 0xBab4F3e701F6d2e009Af3C7f1eF2e7dD68225E96

@HYROSHI_KIPA: 0x80e32DEfc16ce8f78d09E6ef7065AfE031bAcab7

@JUNE_HORLA: 0x6948cBbEa74549062050a164d8fc4cFF27E82084

@SISLEY_ARGONAUT: 0xe166c948b8aED157575B6792019cdeE8a5177dcE

@COUNTER_NOMAD: 0x8E1B6Af660C14f5CC28727f23fCcBC977bd89B6B

@SHINATO_SAMA: 0x6b162Bc637bAAe0DAC38c200D9727fc679a0cCE4

@MISS_PHOENIX_SHIB: 0x30f45F7b08164D2Dd38D9Cdd8509b1E580432d04

@BURF_DURF: 0x5D471E3a033EaF7eE0cA303405978Da4c2cdAD33

You can find more details about the MultiSig Model include the settings and members' information in the

the Shiba Inu Ecosystem Woof Paper Page 24.

ShibaSwap Security Assessment

https://etherscan.io/address/0x4267A3aD7d20c2396ebb0Fe72119984F7073761C
https://etherscan.io/address/0x399EC033EE08241512212a4C388a76C9d3aB1c00
https://etherscan.io/address/0xBab4F3e701F6d2e009Af3C7f1eF2e7dD68225E96
https://etherscan.io/address/0x80e32DEfc16ce8f78d09E6ef7065AfE031bAcab7
https://etherscan.io/address/0x6948cBbEa74549062050a164d8fc4cFF27E82084
https://etherscan.io/address/0xe166c948b8aED157575B6792019cdeE8a5177dcE
https://etherscan.io/address/0x8E1B6Af660C14f5CC28727f23fCcBC977bd89B6B
https://etherscan.io/address/0x6b162Bc637bAAe0DAC38c200D9727fc679a0cCE4
https://etherscan.io/address/0x30f45F7b08164D2Dd38D9Cdd8509b1E580432d04
https://etherscan.io/address/0x5D471E3a033EaF7eE0cA303405978Da4c2cdAD33
https://github.com/shytoshikusama/woofwoofpaper/raw/main/SHIBA_INU_WOOF_WOOF.pdf

UVF-02 | Reusable Code

Category Severity Location Status

Gas
Optimization

Informational
projects/shibaswapv1/contracts/uniswapv2/UniswapV2Factory.sol: 82
, 87, 92, 97, 102, 110, 118

Resolved

Description

The require check require(msg.sender == feeToSetter, 'UniswapV2: FORBIDDEN'); is frequently used

in multiple functions.

Recommendation

The frequently used code can be converted into a modifier and be adopted in all these functions:

modifiermodifier checkFeeToSettercheckFeeToSetter(()){{

		 requirerequire((msgmsg..sender sender ==== feeToSetter feeToSetter,, 'UniswapV2: FORBIDDEN''UniswapV2: FORBIDDEN'));;

		 __;;

}}

Alleviation

[Shiba]: The team heeded our advice and resolved this issue in the commit

b4e8234087b1bc52f14c0e5e94115ca3fc8e47bb .

ShibaSwap Security Assessment

UVF-03 | Lack of Event Emission for Significant Transactions

Category Severity Location Status

Coding
Style

Informational
projects/shibaswapv1/contracts/uniswapv2/UniswapV2Factory.sol: 81, 8
6, 91, 96, 101, 109

Resolved

Description

Function that affect the status of sensitive variables should be able to emit events as notifications to

customers

Recommendation

Consider adding events for sensitive actions, and emit them in the function like below:

11 eventevent SetFeeToSetFeeTo((addressaddress indexedindexed user user,, addressaddress indexedindexed _adminAddress _adminAddress));;

22
33 functionfunction setFeeTosetFeeTo((addressaddress _feeTo _feeTo)) externalexternal override override {{

44 requirerequire((msgmsg..sender sender ==== feeToSetter feeToSetter,, 'UniswapV2: FORBIDDEN''UniswapV2: FORBIDDEN'));;

55 feeTo feeTo == _feeTo _feeTo;;

66 	 	 emitemit SetFeeToSetFeeTo((msgmsg..sendersender,, _feeTo _feeTo));;

77 }}

Alleviation

[Shiba]: The team heeded our advice and resolved this issue in the commit

b4e8234087b1bc52f14c0e5e94115ca3fc8e47bb .

ShibaSwap Security Assessment

UVP-01 | Lack of Input Validation

Category Severity Location Status

Volatile
Code

Major projects/shibaswapv1/contracts/uniswapv2/UniswapV2Pair.sol: 82~84, 89~91 Resolved

Description

Currently, the values of alpha , beta , and totalFee are not validated in the constructor of the contract. All

of them should be positive and beta should be greater than alpha .

Moreover, the modification of alpha and beta may potentially affect the amount of liquidity that could be

transferred to address feeTo and thus break the entire project economy system.
The liquidity that could be

transferred to address feeTo in function _mintFee() can be represented by the following equation:

where:

k_1 is the value of before adding liquidity

k_2 is the value of after adding liquidity

 is the parameter alpha

 is the parameter beta

Based on above equation, we can see that if and only if the value of

tends to 1 on the positive direction (i.e), the value of will be

an extreme large number.

Recommendation

We advise the client to add the following input validators:

requirerequire((_alpha _alpha >> 00,, "_alpha must be greater than 0""_alpha must be greater than 0"));;

requirerequire((_beta _beta >> _alpha _alpha,, "beta should always be later than alpha""beta should always be later than alpha"));;

requirerequire((_totalFee _totalFee >> 00,, "totalFee should not be 0, which will allow free flash swap""totalFee should not be 0, which will allow free flash swap"));;

Also, we advise the client to consider the possibility of the aforementioned case before setting new values

for alpha and beta .

ShibaSwap Security Assessment

liquidity = ​

((β/α) ∗ ​)/(​ − ​) − 1k ​2 k ​2 k ​1

1

k

k

α

β

((β/α) ∗ ​)/(​ −k ​2 k ​2 ​)k ​1

β/α → ((​ −k ​2 ​)/ ​)k ​1 k ​2
+ liquidity

Alleviation

[Shiba]: The team heeded our advice and resolved this issue in the commit

6c6fed3662f811cfe95d3b49be730ce53c65fe95 .

ShibaSwap Security Assessment

Appendix

Finding Categories

Centralization / Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that act

against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Gas Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more optimal

EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Mathematical Operations

Mathematical Operation findings relate to mishandling of math formulas, such as overflows, incorrect

operations etc.

Logical Issue

Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that may

result in a vulnerability.

Coding Style

Coding Style findings usually do not affect the generated byte-code but rather comment on how to make

the codebase more legible and, as a result, easily maintainable.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2

with digest size of 256 bits) digest of the content of each file hosted in the listed source repository under

the specified commit.

ShibaSwap Security Assessment

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command

against the target file.

ShibaSwap Security Assessment

Disclaimer
This report is subject to the terms and conditions (including without limitation, description of services,

confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of

services, and terms and conditions provided to the Company in connection with the Agreement. This

report provided in connection with the Services set forth in the Agreement shall be used by the Company

only to the extent permitted under the terms and conditions set forth in the Agreement. This report may not

be transmitted, disclosed, referred to or relied upon by any person for any purposes without CertiK’s prior

written consent.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or

team. This report is not, nor should be considered, an indication of the economics or value of any

“product” or “asset” created by any team or project that contracts CertiK to perform a security

assessment. This report does not provide any warranty or guarantee regarding the absolute bug-free

nature of the technology analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any

particular project. This report in no way provides investment advice, nor should be leveraged as investment

advice of any sort. This report represents an extensive assessing process intending to help our customers

increase the quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is

that each company and individual are responsible for their own due diligence and continuous security.

CertiK’s goal is to help reduce the attack vectors and the high level of variance associated with utilizing

new and consistently changing technologies, and in no way claims any guarantee of security or

functionality of the technology we agree to analyze.

ShibaSwap Security Assessment

About
Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia

University, CertiK is a leading blockchain security company that serves to verify the security and

correctness of smart contracts and blockchain-based protocols. Through the utilization of our world-class

technical expertise, alongside our proprietary, innovative tech, we’re able to support the success of our

clients with best-in-class security, all whilst realizing our overarching vision; provable trust for all

throughout all facets of blockchain.

ShibaSwap Security Assessment

