
Cub Finance
Security Assessment
Mar 30th 2021



Summary

Overview
Project Summary
Engagement Summary
Finding Summary

Findings
CTK-CUB-1 | Checks Effects Interaction Pattern Not Used
CTK-CUB-2 | Function Return Value Ignored
CTK-CUB-3 | Missing Emit Events
CTK-CUB-4| add() Function Not Restricted
CTK-CUB-5 | Missing Zero Address Validation
CTK-CUB-6 | Privileged Ownerships on MasterChef
CTK-CUB-7 | Privileged Ownerships on CubToken

Appendix | Finding Categories

Disclaimer

About CertiK

1



Summary
This report has been prepared for Cub Finance smart contracts, MasterChef, CubToken,
Timelock and libs to discover issues and vulnerabilities in the source code as well as any
dependencies that were not part of an officially recognized library. A comprehensive
examination has been performed, utilizing static analysis and manual review techniques.

The auditing process pays special attention to the following considerations:
● Testing the smart contracts against both common and uncommon attack vectors.
● Assessing the codebase to ensure compliance with current best practices and

industry standards.
● Ensuring contract logic meets the specifications and intentions of the client.
● Cross-referencing contract structure and implementation against similar smart

contracts produced by industry leaders.
● Thorough line-by-line manual review of the entire codebase by security experts.

The security assessment resulted in 7 findings that ranged from minor to informational. We
recommend addressing these findings to ensure a high level of security standards and
industry practices.

We suggest below recommendations that could better serve the project from the security
perspective:

1. Enhance general coding practices for better structures of source codes;
2. Add enough unit tests to cover the possible use cases given they are currently

missing in the repository;
3. Provide more comments per each function for readability, especially contracts are

verified in public;
4. Provide more transparency on privileged activities once the protocol is live.

2



Overview

Project Summary

Name Cub Finance

Codebase https://github.com/CubFinance/contracts/

Commit Hash e9df9a03001d880c3e512387ad987f6b7bc6113b

Engagement Summary

Delivery Date Mar 30th, 2021

Methodology Static analysis and manual review

Contracts in Scope 3

Contract - Token CubToken

Contract - MasterChef MasterChef

Contract - TimeLock TimeLock

Finding Summary

Total 7

Critical 1

Medium 0

Minor 2

Informational 4

3

https://github.com/CubFinance/contracts/


Findings

ID Title Severity Response

CTK-CUB-1 Checks Effects Interaction Pattern Not Used Minor Resolved

CTK-CUB-2 Function Return Value Ignored Informational Resolved

CTK-CUB-3 Missing Emit Events Informational Resolved

CTK-CUB-4 add() Function Not Restricted Critical Acknowledged

CTK-CUB-5 Lack of Input Validation Minor Resolved

CTK-CUB-6 Privileged Ownerships on MasterChef Informational Resolved

CTK-CUB-7 Privileged Ownerships on CubToken Informational Resolved

4



CTK-CUB-1 | Checks Effects Interaction Pattern Not Used

Type Severity Location

Logic Issue Minor MasterChef: L181

Description

In function add(), lpToken is pointing to a smart contract that is implemented based on a
BEP20 interface. This smart contract can only be passed into function add() by owner as
one of the parameters while the implementation of lpToken is unknown statically, even if
lpToken strictly followed the BEP20 interface.

Due to the unknown implementation of contract lpToken, the implementation of function
safeTransfer() is also unknown and may have a malicious logical implementation that
calls back to the function deposit(), which can lead to another invocation of
safeTransfer() in L181 without updating user.amount in L182. This is dangerous to the
user.amount and will incorrectly calculate the user's balance eventually.

Recommendation

We advise developers to swap pool.lpToken.safeTransfer(feeAddress, depositFee);

and user.amount = user.amount.add(_amount).sub(depositFee); to follow the
Checks-Effects-Interactions Pattern.

function deposit(uint256 _pid, uint256 _amount) public {

...

if(_amount > 0) {

pool.lpToken.safeTransferFrom(address(msg.sender), address(this), _amount);

if(pool.depositFeeBP > 0){

uint256 depositFee = _amount.mul(pool.depositFeeBP).div(10000);

user.amount = user.amount.add(_amount).sub(depositFee);

pool.lpToken.safeTransfer(feeAddress, depositFee);

}else{

user.amount = user.amount.add(_amount);

}

}

...

}

5

https://docs.soliditylang.org/en/v0.6.12/security-considerations.html#use-the-checks-effects-interactions-pattern


Alleviation
The update is applied at a later commit.

6

https://github.com/CubFinance/contracts/commit/a1e3bb085d9ef492b58f18fa6523121d0cd90839


CTK-CUB-2 | Function Return Value Ignored

Type Severity Location

Volatile Code Informational MasterChef: L224, 226

Description
1. Return values of function transfer() are ignored in function safeCubTransfer().
2. The return values of cub.transfer(_to, cubBal),cub.transfer(_to, _amount);

are ignored in function safeEggTransfer().

Recommendation
1. We advise developers to handle the return value of transfer() to check if the

transfer is executed without any error.
2. Using cub.safeTransfer() Instead of cub.transfer().

Alleviation
The update is applied at a later commit.

7

https://github.com/CubFinance/contracts/commit/26be7f5f092a5f0936a4c043af213bc16a1741e7


CTK-CUB-3 | Missing Emit Events

Type Severity Location

Volatile Code Informational MasterChef L231, L236. L242

Description
Functions that affect the status of sensitive variables should be able to emit events as
notifications to customers.

MasterChef:
dev(), setFeeAddress(), updateEmissionRate()

Recommendation
Consider adding events for sensitive actions, and emit them in the function like below.

event SetFeeAddress(address indexed user, address indexed _feeAddress);

...

function setFeeAddress(address _feeAddress) public{

require(msg.sender == feeAddress, "setFeeAddress: FORBIDDEN");

feeAddress = _feeAddress;

emit SetFeeAddress(msg.sender, _feeAddress)

}

Alleviation
The update is applied at a later commit.

8

https://github.com/CubFinance/contracts/commit/a21742bb6f66bfbe4932c5e7ea408201608d89aa


CTK-CUB-4| add() Function Not Restricted

Type Severity Location

Volatile Code Critical MasterChef: L93

Description
The comment in L92, mentioned // XXX DO NOT add the same LP token more than

once. Rewards will be messed up if you do.

The total amount of reward cubReward in function updatePool() will be incorrectly
calculated if the same LP token is added into the pool more than once in function add().

However, the code is not reflected in the comment behaviors as there isn't any valid
restriction on preventing this issue.

The current implementation is relying on the trust of the owner to avoid repeatedly adding
the same LP token to the pool, as the function will only be called by the owner.

Recommendation
Using mapping of addresses -> booleans, which can restrict the same address being
added twice.

Alleviation
The update is applied at a later commit.

9

https://github.com/CubFinance/contracts/commit/abade9e177f5a2ad6507f33cb1d50ab193f1c193


CTK-CUB-5 | Missing Zero Address Validation

Type Severity Location

Volatile Code Minor MasterChef: L231, L236

Description
The assigned value to devaddr, feeAddress should be verified as non zero value to prevent
being mistakenly assigned as address(0) in dev() function and setFeeAddress().
Violation of this may cause losing ownership of devaddr, feeAddress.

Recommendation
Check that the address is not zero by adding checks in function dev() and
setFeeAddress(). Please ignore if the team inclines to leverage the same function in a way
to renounce the fee collections (mimic the token burn in a way).

Alleviation
The update is applied at a later commit.

10

https://github.com/CubFinance/contracts/commit/5d10f734782d7f8c79f00fbb3b9ad3a18a697ab5


CTK-CUB-6 | Privileged Ownerships on MasterChef

Type Severity Location

Business Model Informational MasterChef: L93, L110, L242

Description
The owner of MasterChef has permission to add and set pools that could update the
parameters on rewards without obtaining the consensus of the community.

Recommendation
Renounce ownership when it is the right timing, or gradually migrate to a timelock plus
multisig governing procedure and let the community monitor in respect of transparency
considerations.

Alleviation
The team confirms that the owner of masterchef is a timelock contract.

11



CTK-CUB-7 | Privileged Ownerships on CubToken

Type Severity Location

Business Model Informational CubToken

Description
CubToken is the standard BEP20 implementation that contains the mint functionality with
ownership controls, which means whoever obtained access to the owner account would be
able to tamper with the integrity of the token economics.

Recommendation
In general, renounce ownership when it is the right timing, or gradually migrate to a
timelock plus multisig governing procedure and let the community monitor in respect of
transparency considerations. Specifically for this scenario, we assume the owner will be
transferred to the vault (MasterChef) on top of the token. We recommend that the team
maintains a high level of transparency on such a transaction taking place.

Alleviation
The team confirmed that the token owner is the MasterChef.

12



Appendix | Finding Categories
Gas Optimization

Refer to exhibits that do not affect the functionality of the code but generate
different, more optimal EVM opcodes resulting in a reduction in the total gas cost of
a transaction.

Mathematical Operations
Refer to exhibits that relate to mishandling of math formulas, such as overflows,
incorrect operations, etc.

Logical Issue
Refer to exhibits that detail a fault in the logic of the linked code, such as an
incorrect notion on how block.timestamp works.

Control Flow
Concern the access control imposed on functions, such as owner-only functions
being invoke-able by anyone under certain circumstances.

Volatile Code
Refer to segments of code that behave unexpectedly on certain edge cases that may
result in a vulnerability.

Data Flow
Describe faults in the way data is handled at rest and in memory, such as the result
of a struct assignment operation affecting an in-memory struct rather than an
in-storage one.

Language Specific
Language Specific findings are issues that would only arise within Solidity, i.e.
incorrect usage of private or delete.

Coding Style
Usually do not affect the generated byte-code and comment on how to make the
codebase more legible and as a result easily maintainable.

Inconsistency
Refer to functions that should seemingly behave similarly yet contain different code,
such as a constructor assignment imposing different require statements on the
input variables than a setter function.

Magic Numbers
Refer to numeric literals that are expressed in the codebase in their raw format and
should otherwise be specified as constant contract variables aiding in their
legibility and maintainability.

Compiler Error

13



Refer to an error in the structure of the code that renders it impossible to compile
using the specified version of the project.

Dead Code
Code that otherwise does not affect the functionality of the codebase and can be
safely omitted.

Business Model
Refer to contract or function logics that are debatable or not clearly implemented
according to the design intentions.

14



Disclaimer
This report is subject to the terms and conditions (including without limitation, description
of services, confidentiality, disclaimer and limitation of liability) set forth in the Services
Agreement, or the scope of services, and terms and conditions provided to the Company in
connection with the Agreement. This report provided in connection with the Services set
forth in the Agreement shall be used by the Company only to the extent permitted under
the terms and conditions set forth in the Agreement. This report may not be transmitted,
disclosed, referred to or relied upon by any person for any purposes without CertiK’s prior
written consent.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any
particular project or team. This report is not, nor should be considered, an indication of the
economics or value of any “product” or “asset” created by any team or project that
contracts CertiK to perform a security assessment. This report does not provide any
warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business
model or legal compliance.

This report should not be used in any way to make decisions around investment or
involvement with any particular project. This report in no way provides investment advice,
nor should be leveraged as investment advice of any sort. This report represents an
extensive assessing process intending to help our customers increase the quality of their
code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk.
CertiK’s position is that each company and individual are responsible for their own due
diligence and continuous security. CertiK’s goal is to help reduce the attack vectors and the
high level of variance associated with utilizing new and consistently changing technologies,
and in no way claims any guarantee of security or functionality of the technology we agree
to analyze.

15



About CertiK
Founded in 2017 by leading academics in the field of Computer Science from both Yale and
Columbia University, CertiK is a leading blockchain security company that serves to verify
the security and correctness of smart contracts and blockchain-based protocols. Through
the utilization of our world-class technical expertise, alongside our proprietary, innovative
tech, we’re able to support the success of our clients with best-in-class security, all whilst
realizing our overarching vision; provable trust for all throughout all facets of blockchain.

16


